浏览全部资源
扫码关注微信
1. 燕山大学信息科学与工程学院,河北 秦皇岛 066004
2. 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
3. 燕山大学电气工程学院,河北 秦皇岛 066004
[ "彭秀平(1984- ),女,安徽安庆人,博士,燕山大学副教授,主要研究方向为编码理论、信号设计等" ]
[ "李红晓(1995- ),女,河北邢台人,燕山大学硕士生,主要研究方向为编码理论、信号设计等" ]
[ "王仕德(1997- ),男,河北石家庄人,燕山大学硕士生,主要研究方向为编码理论、信号设计等" ]
[ "林洪彬(1979- ),男,河北秦皇岛人,燕山大学副教授,主要研究方向为智能信息处理、动态复杂场景认知" ]
网络出版日期:2021-12,
纸质出版日期:2021-12-25
移动端阅览
彭秀平, 李红晓, 王仕德, 等. 周期为N≡1(mod4)的平衡最优几乎二元序列对[J]. 通信学报, 2021,42(12):163-171.
Xiuping PENG, Hongxiao LI, Shide WANG, et al. Balanced optimal almost binary sequence pairs of period N≡1(mod4)[J]. Journal on communications, 2021, 42(12): 163-171.
彭秀平, 李红晓, 王仕德, 等. 周期为N≡1(mod4)的平衡最优几乎二元序列对[J]. 通信学报, 2021,42(12):163-171. DOI: 10.11959/j.issn.1000-436x.2021078.
Xiuping PENG, Hongxiao LI, Shide WANG, et al. Balanced optimal almost binary sequence pairs of period N≡1(mod4)[J]. Journal on communications, 2021, 42(12): 163-171. DOI: 10.11959/j.issn.1000-436x.2021078.
基于组合设计理论,对周期为N≡1(mod 4)的平衡最优几乎二元序列对的构造方法进行了研究。根据(几乎)二元序列对的不同组合,得出了最大互相关值分别为θ
c
=1,2,3,以此θ
c
值为前提,推导得出 3 种情况的自相关理论界,并生成了4类满足互相关值和自相关理论界下界值的平衡(几乎)最优几乎二元序列对。所提构造方法扩展了互相关值的取值范围并进一步降低了最优二元序列对的互相关值,且序列长度参数 f 可选择任意整数,丰富了最优二元序列对的存在空间。
Based on the combinatorial design theory, the constructions of balanced optimal almost binary sequence pairs of period N≡1(mod 4)were researched.The maximal cross-correlation values θ
c
were obtained by different combinations of (almost) binary sequence pairs.Furthermore, three new bounds on the autocorrelation values under the precondition of the value of θ
c
=1,2,3 were presented individually.Meanwhile,four types of balanced(almost)optimal almost binary sequence pairs were generated, which satisfied the cross-correlation values and autocorrelation theory bounds.Through the constructions, the range of the cross-correlation values is expanded and the cross-correlation value of the optimal binary sequence pairs is further reduced.More than odd, the value of sequence length parameter f can be any integer, which enriches the existence space of the optimal binary sequence pair.
DIMITROV M , BAITCHEVA T , NIKOLOV N . Efficient generation of low autocorrelation binary sequences [J ] . IEEE Signal Processing Letters , 2020 , 27 : 341 - 345 .
康家方 , 王红星 , 赵志勇 , 等 . 新的扩频通信调制方法 [J ] . 通信学报 , 2013 , 34 ( 5 ): 79 - 87 .
KANG J F , WANG H X , ZHAO Z Y , et al . Novel method of spread spectrum communication [J ] . Journal on Communications , 2013 , 34 ( 5 ): 79 - 87 .
LUO J Q . Binary sequences with three-valued cross correlations of different lengths [J ] . IEEE Transactions on Information Theory , 2016 , 62 ( 12 ): 7532 - 7537 .
WELCH L . Lower bounds on the maximum cross correlation of signals [J ] . IEEE Transactions on Information Theory , 1974 , 20 ( 3 ): 397 - 399 .
LIU Z L , GUAN Y L , PARAMPALLI U , et al . Spectrally-constrained sequences:bounds and constructions [J ] . IEEE Transactions on Information Theory , 2018 , 64 ( 4 ): 2571 - 2582 .
SHEDD D , SARWATE D . Construction of sequences with good correlation properties [J ] . IEEE Transactions on Information Theory , 1979 , 25 ( 1 ): 94 - 97 .
LUO L F , MA W P . Balanced quaternary sequences of even period with optimal autocorrelation [J ] . IET Communications , 2019 , 13 ( 12 ): 1808 - 1812 .
TANG X H , GONG G . New constructions of binary sequences with optimal autocorrelation value/magnitude [J ] . IEEE Transactions on Information Theory , 2010 , 56 ( 3 ): 1278 - 1286 .
PENG X P , LIN H B , LIU Y M , et al . New families of almost binary sequences with optimal autocorrelation property [J ] . IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences , 2019 , E102.A ( 2 ): 467 - 470 .
SU W , YANG Y , ZHOU Z C , et al . New quaternary sequences of even length with optimal auto-correlation [J ] . Science China Information Sciences , 2018 , 61 ( 2 ): 022308 .
彭秀平 , 冀惠璞 , 郑德亮 , 等 . 周期为2q理想几乎四进制序列构造研究 [J ] . 通信学报 , 2019 , 40 ( 12 ): 105 - 113 .
PENG X P , JI H P , ZHENG D L , et al . Study on the constructions of optimal almost quaternary sequences with period 2q [J ] . Journal on Communications , 2019 , 40 ( 12 ): 105 - 113 .
SONG M K , SONG H Y . Perfect polyphase sequences from cubic polynomials [C ] // Proceedings of 2017 IEEE International Symposium on Information Theory (ISIT) . Piscataway:IEEE Press , 2017 : 1292 - 1295 .
ZHANG D , HELLESETH T . New optimal sets of perfect polyphase sequences based on circular Florentine arrays [C ] // Proceedings of 2020 IEEE International Symposium on Information Theory (ISIT) . Piscataway:IEEE Press , 2020 : 2921 - 2925 .
PARK K H , SONG H Y , KIM D S , et al . Optimal families of perfect polyphase sequences from the array structure of Fermat-quotient sequences [J ] . IEEE Transactions on Information Theory , 2016 , 62 ( 2 ): 1076 - 1086 .
CHONG J F , ZHUO Z P . Cross-correlation properties of some perfect binary sequences [C ] // Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering . Piscataway:IEEE Press , 2011 : 654 - 657 .
ZHANG T , LI S X , FENG T , et al . Some new results on the cross correlation of m-sequences [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 5 ): 3062 - 3068 .
WU Y S , YUE Q , SHI X Y , et al . Binary and ternary sequences with a few cross correlations [J ] . Cryptography and Communications , 2020 , 12 ( 3 ): 511 - 525 .
DING C S , TANG X H . The cross-correlation of binary sequences with optimal autocorrelation [J ] . IEEE Transactions on Information Theory , 2010 , 56 ( 4 ): 1694 - 1701 .
YANG Y , TANG X H . Balanced quaternary sequences pairs of odd period with (almost) optimal autocorrelation and cross-correlation [J ] . IEEE Communications Letters , 2014 , 18 ( 8 ): 1327 - 1330 .
YANG Y , TANG X H , ZHOU Z C . The autocorrelation magnitude of balanced binary sequence pairs of prime period N ≡1(mod 4)with optimal cross-correlation [J ] . IEEE Communications Letters , 2015 , 19 ( 4 ): 585 - 588 .
沈秀敏 . 基于分圆类的理想序列偶设计 [D ] . 秦皇岛:燕山大学 , 2017 .
SHEN X M . The design of optimal sequence pairs based on cyclotomy [D ] . Qinhuangdao:Yanshan University , 2017 .
DING C S , YIN J X . Sets of optimal frequency-hopping sequences [J ] . IEEE Transactions on Information Theory , 2008 , 54 ( 8 ): 3741 - 3745 .
FAN P Z , DARNELL M . Sequence design for communications applications [M ] . Chichester : John Wiley & Sons , 1996 .
0
浏览量
273
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构