浏览全部资源
扫码关注微信
1. 福州大学数学与计算机科学学院,福建 福州 350108
2. 福州大学网络安全福建省高校重点实验室,福建 福州 350108
3. 福州大学福建省网络计算与智能信息处理重点实验室,福建 福州 350108
[ "李家印(1990– ),男,山东济宁人,福州大学博士生,主要研究方向为移动数据采集、智慧城市、云外包数据存储、隐私保护、密文计算等" ]
[ "郭文忠(1979– ),男,福建惠安人,博士,福州大学教授、博士生导师,主要研究方向为计算机智能及其在计算机网络中的应用等" ]
[ "李小燕(1988- ),女,福建福州人,博士,福州大学讲师,主要研究方向为数据中心网络、网络安全、算法的设计与分析等" ]
[ "刘西蒙(1988– ),男,陕西西安人,博士,福州大学研究员,主要研究方向为隐私计算、密文数据挖掘、大数据隐私保护、可搜索加密等" ]
网络出版日期:2020-07,
纸质出版日期:2020-07-25
移动端阅览
李家印, 郭文忠, 李小燕, 等. 基于智能交通的隐私保护道路状态实时监测方案[J]. 通信学报, 2020,41(7):73-83.
Jiayin LI, Wenzhong GUO, Xiaoyan LI, et al. Privacy-preserving real-time road conditions monitoring scheme based on intelligent traffic[J]. Journal on communications, 2020, 41(7): 73-83.
李家印, 郭文忠, 李小燕, 等. 基于智能交通的隐私保护道路状态实时监测方案[J]. 通信学报, 2020,41(7):73-83. DOI: 10.11959/j.issn.1000-436x.2020110.
Jiayin LI, Wenzhong GUO, Xiaoyan LI, et al. Privacy-preserving real-time road conditions monitoring scheme based on intelligent traffic[J]. Journal on communications, 2020, 41(7): 73-83. DOI: 10.11959/j.issn.1000-436x.2020110.
为缓解道路的交通压力,减少道路拥堵现象的出现及避免交通事故的发生,结合安全、K最近邻(KNN)算法,提出了一种基于智能交通的隐私保护道路拥堵状态的实时监测(PPIM)算法。为了确保交通数据的安全,采用安全多方计算策略将数据内容随机分成独立的部分,通过不共谋的多服务器对数据分量进行存储和加密。为了提升道路状态监测的精度,提出了一种改进型的 KNN 交通监测算法,借助数据的相似度计算,获取衡量道路之间交通状态关系程度的相关值,并将其作为权重系数与传统的 KNN 算法进行整合。为加快密态数据的处理速度,设计了一系列的数据安全计算协议,实现了数据的安全处理。另外,利用真实的交通数据对该算法进行验证,实验结果表明改进型 KNN 算法有助于提高道路监测的准确度。实验分析表明,所提算法在保证数据的安全同时可以提高交通监测的精度。
To alleviate the traffic pressure on roads
reduce the appearance of road congestion
and avoid the occurrence of traffic accidents
a privacy-preserving intelligent monitoring (PPIM) scheme based on intelligent traffic was proposed in combination with the safe and k-nearest neighbor (KNN) algorithm.To ensure the security of traffic data
the data content was randomly divided into independent parts via the secure multi-party computing strategy
and the data components were stored and encrypted separately by non-colluding multi-servers.To improve the accuracy of road condition monitoring
an improved KNN traffic monitoring algorithm was proposed.By virtue of the similarity calculation of data
the correlation value to measure the degree of traffic condition relationship between roads was obtained.And it was integrated with the KNN as the weight coefficient.To speed up the processing of dense data
a series of data security computing protocols were designed
and the data security processing was realized.In addition
real traffic data were used to verify the algorithm.The results show that the improved KNN algorithm is helpful to improve the accuracy of traffic monitoring.The analysis shows that the algorithm can not only guarantee the safety of data but improve the accuracy of traffic monitoring.
ARNOTT R , KENNETH S . The economics of traffic congestion [J ] . American Scientist , 1994 , 82 ( 5 ): 446 - 455 .
KIM J , MEI-PO K . Beyond commuting:ignoring individuals activity-travel patterns may lead to inaccurate assessments of their exposure to traffic congestion [J ] . International Journal of Environment Research and Public Health , 2019 , 16 ( 1 ): 89 - 109 .
MU S D , XIONG Z X , TIAN Y X . Intelligent traffic control system based on cloud computing and big data mining [J ] . IEEE Transactions on Industrial Informatics , 2019 , 15 ( 12 ): 6583 - 6592 .
LATIF S , AFZAAL H , ZAFAR N A . Intelligent traffic monitoring and guidance system for smart city [C ] // Mathematics and Engineering Technologies.[S.n.:s.l] . 2018 : 1 - 6 .
WANG X B , LIU C , ZHU M L . Instant traveling companion discovery based on traffic monitoring streaming data [C ] // IEEE Web Information Systems and Applications Conference . Piscataway:IEEE Press , 2016 : 89 - 94 .
CELESTI A , GALLETTA A , CARNEVALE L , et al . An IoT cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing [J ] . IEEE Sensors Journal , 2017 , 18 ( 12 ): 4795 - 4802 .
WANG Y , ZHANG Y , PIAO X , et al . Traffic data reconstruction viaadaptive spatial temporal correlations [J ] . IEEE Transactions on Intelligent Transportation Systems , 2018 , 20 ( 4 ): 1531 - 1543 .
DATONDJI S R E , DUPUIS Y , SUBIRATS P , et al . A survey of vision-based traffic monitoring of road intersections [J ] . IEEE Transactions on Intelligent Transportation Systems , 2016 , 17 ( 10 ): 2681 - 2698 .
JAIN N K , SAINI R K , MITTAL P . A review on traffic monitoring system techniques [C ] // Soft Computing:Theories and Applications . Berlin:Springer , 2019 : 569 - 577 .
PANG C C C , LAM W W L , YUNG N H C . A novel method for resolving vehicle occlusion in a monocular traffic-image sequence [J ] . IEEE Transactions on Intelligent Transportation Systems , 2004 , 5 ( 3 ): 129 - 141 .
BROWN J W , OHRIMENKO O , TAMASSIA R . Privacy-preserving real-time traffic statistics [C ] // Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems . New York:ACM Press , 2013 : 540 - 543 .
GISDAKIS S , MANOLOPOULOS V , TAO S , et al . Secure and privacy preserving smartphone-based traffic information systems [J ] . IEEE Transactions on Intelligent Transportation Systems , 2014 , 16 ( 3 ): 1428 - 1438 .
HAHANOV V , ZHALILO A . Cloud driven traffic control:formal modeling and technical realization [C ] // IEEE Mediterranean Conference on Embedded Computing . Piscataway:IEEE Press , 2015 : 21 - 24 .
ZEGHID M , MACHHOUT M , KHRIJI L , BAGANNE A , et al . A modified AES based algorithm for image encryption [J ] . International Journal of Computer Science and Engineering , 2007 , 1 ( 1 ): 70 - 75 .
BRISSAUD P O , FRANCCIS J , CHRISMENT I , et al . Transparent and service-agnostic monitoring of encrypted Web traffic [J ] . IEEE Transactions on Networks and Service Management , 2019 , 16 ( 3 ): 842 - 856 .
LINDELL Y , . Secure multiparty computation for privacy preserving data mining [C ] // IEEE in Encyclopedia of Data Warehousing and Mining . Piscataway:IEEE Press , 2005 : 1005 - 1009 .
BEN-DAVID A , NISAN N , PINKAS B . FairplayMP:a system for secure multi-party computation [C ] // Proceedings of the 15th ACM Conference on Computer and Communications Security . New York:ACM Press , 2008 : 257 - 266 .
DOU Z , CHEN X B , XU G , et al . An attempt at universal quantum secure multi-party computation with graph state [J ] . Physica Scripta , 2020 , 95 ( 5 ): 55 - 106 .
LI J Y , GUO W Z , MA Z , et al . Privacy-preserving compressive sensing for traffic estimation [C ] // IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
LI J Y , ZHENG H F , FENG X X , et al . Traffic estimation in road network via compressive sensing [C ] // IEEE International Conference on Wireless Communications and Signal Processing . Piscataway:IEEE Press , 2017 : 1 - 6 .
KAHAN W . IEEE standard 754 for binary floating-point arithmetic [J ] . Lecture Notes on the Status of IEEE 754 , 1996 , 5 ( 11 ): 1 - 30 .
0
浏览量
795
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构