浏览全部资源
扫码关注微信
1. 中国科学院信息工程研究所,北京 100093
2. 中国科学院大学网络空间安全学院,北京 100049
[ "王竹(1972- ),女,山西太原人,博士,中国科学院高级工程师,主要研究方向为信息安全、人工智能" ]
[ "贺坤(1995- ),男,安徽安庆人,中国科学院硕士生,主要研究方向为信息保护、隐私计算" ]
[ "王新宇(1989- ),男,甘肃平凉人,中国科学院博士生,主要研究方向为信息保护、隐私计算" ]
[ "牛犇(1984- ),男,陕西西安人,博士,中国科学院副研究员,主要研究方向为网络安全、隐私计算" ]
[ "李凤华(1966- ),男,湖北浠水人,博士,中国科学院研究员、博士生导师,主要研究方向为网络与系统安全、信息保护、隐私计算" ]
网络出版日期:2020-02,
纸质出版日期:2020-02-25
移动端阅览
王竹, 贺坤, 王新宇, 等. Android设备中基于流量特征的隐私泄露评估方案[J]. 通信学报, 2020,41(2):155-164.
Zhu WANG, Kun HE, Xinyu WANG, et al. Traffic characteristic based privacy leakage assessment scheme for Android device[J]. Journal on communications, 2020, 41(2): 155-164.
王竹, 贺坤, 王新宇, 等. Android设备中基于流量特征的隐私泄露评估方案[J]. 通信学报, 2020,41(2):155-164. DOI: 10.11959/j.issn.1000-436x.2020020.
Zhu WANG, Kun HE, Xinyu WANG, et al. Traffic characteristic based privacy leakage assessment scheme for Android device[J]. Journal on communications, 2020, 41(2): 155-164. DOI: 10.11959/j.issn.1000-436x.2020020.
针对Android操作系统App内第三方域名采集用户信息造成的隐私泄露问题,基于TF-IDF模型和层次聚类方法提出了移动设备中的隐私泄露评估方案HostRisk。TF-IDF模型通过App内域名的行为特征计算域名与App的业务相关性,对于未能表现出App业务相关性行为特征的业务相关域名通过平均连接的凝聚型层次聚类方法进行调整优化,最终根据App内所有域名的排名计算其隐私泄露危害程度。实验结果验证了所提方案的有效性和效率。
Aiming at the privacy leakage
which was caused by collecting user information by third-party host in Android operating system App
a privacy leakage evaluation scheme HostRisk was proposed.HostRisk was based on TF-IDF model and hierarchical clustering method
which was applied in mobile device.The TF-IDF model calculated the business relevance between Apps and hosts via the behavior characteristics of the hosts in these Apps.For the business related hosts that fail to express the business relevance characteristics
those hosts were adjusted and optimized via the average connected hierarchical agglomerative clustering method.Finally
the harmful degree of privacy leakage was evaluated based on the ranking of all hosts in the App.The experimental results verify the effectiveness and efficiency of the scheme.
LI F H , LI H , NIU B , et al . Privacy computing:concept,computing framework,and future development trends [J ] . Elsevier Engineering , 2019 , 5 ( 6 ): 1179 - 1192 .
REN J , RAO A , LINDORFER M , et al . Recon:revealing and controlling PII leaks in mobile network traffic [C ] // The 14th Annual International Conference on Mobile Systems,Applications,and Services . ACM , 2016 : 361 - 374 .
WANG H , GUO Y . Understanding third-party libraries in mobile App analysis [C ] // 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) . IEEE , 2017 : 515 - 516 .
BOOK T , WALLACH D S . A case of collusion:a study of the interface between ad libraries and their Apps [C ] // The Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices . ACM , 2013 : 79 - 86 .
STEVENS R , GIBLER C , CRUSSELL J , et al . Investigating user privacy in android ad libraries [C ] // Workshop on Mobile Security Technologies (MoST) . Citeseer , 2012 :10.
GRACE M C , ZHOU W , JIANG X , et al . Unsafe exposure analysis of mobile in-App advertisements [C ] // The Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks . ACM , 2012 : 101 - 112 .
LIN J , AMINI S , HONG J I , et al . Expectation and purpose:understanding users’ mental models of mobile App privacy through crowdsourcing [C ] // The 2012 ACM Conference on Ubiquitous Computing . ACM , 2012 : 501 - 510 .
LI M , WANG W , WANG P , et al . LibD:scalable and precise third-party library detection in android markets [C ] // 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE) . ACM , 2017 : 335 - 346 .
MA Z , WANG H , GUO Y , et al . LibRadar:fast and accurate detection of third-party libraries in Android Apps [C ] // The 38th International Conference on Software Engineering Companion . 2016 : 653 - 656 .
KUZUNO H , TONAMI S . Signature generation for sensitive information leakage in android applications [C ] // 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW) . IEEE , 2013 : 112 - 119 .
LI J , ZHAI L , ZHANG X , et al . Research of android malware detection based on network traffic monitoring [C ] // 2014 9th IEEE Conference on Industrial Electronics and Applications . IEEE , 2014 : 1739 - 1744 .
HE Y , YANG X , HU B , et al . Dynamic privacy leakage analysis of android third-party libraries [J ] . Journal of Information Security and Applications , 2019 , 46 : 259 - 270 .
FANG Z , HAN W , LI Y . Permission based Android security:issues and countermeasures [J ] . Computers & Security , 2014 , 43 : 205 - 218 .
ENCH W , OCTEAU D , MCDANIEL P D , et al . A study of Android application security [C ] // USENIX Security Symposium . 2011 :2.
BOOK T , PRIDGEN A , WALLACH D S . Longitudinal analysis of android ad library permissions [J ] . arXiv Preprint,arXiv:1303.0857 , 2013 .
NARAYNAN A , CHEN L , CHAN C K . Addetect:automated detection of Android ad libraries using semantic analysis [C ] // 2014 IEEE Ninth International Conference on Intelligent Sensors,Sensor Networks and Information Processing (ISSNIP) . IEEE , 2014 : 1 - 6 .
SUN M , TAN G . Nativeguard:protecting android applications from third-party native libraries [C ] // The 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks . ACM , 2014 : 165 - 176 .
BACKES M , BUGIEL S , DERR E . Reliable third-party library detection in android and its security applications [C ] // The 2016 ACM SIGSAC Conference on Computer and Communications Security . ACM , 2016 : 356 - 367 .
CRUSSEL J , GIBLER C , CHEN H . Andarwin:scalable detection of semantically similar android applications [C ] // European Symposium on Research in Computer Security . 2013 : 182 - 199 .
WANG H , GUO Y , MA Z , et al . Wukong:a scalable and accurate two-phase approach to android app clone detection [C ] // The 2015 International Symposium on Software Testing and Analysis . 2015 : 71 - 82 .
王浩宇 , 郭耀 , 马子昂 , 等 . 大规模移动应用第三方库自动检测和分类方法 [J ] . 软件学报 , 2017 , 6 : 1373 - 1388 .
WANG H Y , GUO Y , MA Z A , et al . Automated detection and classi-fication of third-party libraries in large scale Android Apps [J ] . Journal of Software , 2017 , 6 : 1373 - 1388 .
LIU B , LIU B , JIN H , et al . Efficient privilege de-escalation for adlibraries in mobile Apps [C ] // The 13th Annual International Conference on Mobile Systems,Applications,and Services . 2015 : 89 - 103 .
TANG Z , XUE M , MENG G , et al . Securing Android applications via edge assistant third-party library detection [J ] . Computers & Security , 2019 , 80 : 257 - 272 .
ENCK W , ONGTANG M , MCDANIEL P . On lightweight mobile phone application certification [C ] // The 16th ACM conference on Computer and Communications Security . ACM , 2009 : 235 - 245 .
SEO S H , GUPTA A , SALLAM A M , et al . Detecting mobile malware threats to homeland security through static analysis [J ] . Journal of Network and Computer Applications , 2014 , 38 : 43 - 53 .
TENENBOIM-CHEKINA L , BARAD O , SHABTAI A , et al . Detecting application update attack on mobile devices through network features [C ] // 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . IEEE , 2013 : 91 - 92 .
ZHOU Y , WANG Z , ZHOU W , et al . Hey,you,get off of my market:detecting malicious apps in official and alternative android markets [C ] // 19th Annual Network & Distributed System Security Symposium . 2012 : 50 - 52 .
李梦玉 , 马严 , 黄小红 , 等 . 基于URL的恶意访问检测方法 [J ] . 通信学报 , 2018 , 39 ( Z1 ): 92 - 98 .
LI M Y , MA Y , HUANG X H , et al . Malicious access detection method based on URL [J ] . Journal on Communications , 2018 , 39 ( Z1 ): 92 - 98 .
李佳 , 云晓春 , 李书豪 , 等 . 基于混合结构深度神经网络的 HTTP恶意流量检测方法 [J ] . 通信学报 , 2019 , 40 ( 1 ): 28 - 37 .
LI J , YUN X C , LI S H , et al . HTTP malicious traffic detection method based on hybrid structure deep neural network [J ] . Journal on Commu-nications , 2019 , 40 ( 1 ): 28 - 37 .
GRACE M , ZHOU Y , ZHANG Q , et al . Riskranker:scalable and accurate zero-day Android malware detection [C ] // The 10th International Conference on Mobile Systems,Applications,and Services . 2012 : 281 - 294 .
KUMAR R , ZHANG X , WANG W , et al . A multimodal malware detection technique for Android IoT devices using various features [J ] . IEEE Access , 2019 , 7 : 64411 - 64430 .
ALSWAINA F , ELLEITHY K . Android malware permission-based multi-class classification using extremely randomized trees [J ] . IEEE Access , 2018 , 6 : 76217 - 76227 .
LEVANDOWSKY M , WINTER D . Distance between sets [J ] . Nature , 1971 , 234 ( 5323 ):34.
0
浏览量
971
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构