浏览全部资源
扫码关注微信
北京邮电大学泛网无线通信教育部重点实验室,北京 100876
北京邮电大学网络与交换技术全国重点实验室,北京 100876
Received:31 May 2024,
Revised:12 June 2024,
Published:25 June 2024
移动端阅览
牛凯,张平.语义通信的数学理论[J].通信学报,2024,45(06):7-7.
Niu Kai, Zhang Ping. A mathematical theory of semantic communication[J]. Journal on communications, 2024, 45(6): 7-59.
牛凯,张平.语义通信的数学理论[J].通信学报,2024,45(06):7-7. DOI: 10.11959/j.issn.1000-436x.2024111.
Niu Kai, Zhang Ping. A mathematical theory of semantic communication[J]. Journal on communications, 2024, 45(6): 7-59. DOI: 10.11959/j.issn.1000-436x.2024111.
自从1948年经典信息论诞生以来,在其指导下,现代通信技术已经逼近了理论性能极限,例如信息熵
<math id="M1"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592415&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592416&type=
8.55133343
、信道容量
<math id="M2"> <mi>C</mi> <mo>=</mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <msub> <mrow> <mi mathvariant="normal">x</mi> </mrow> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>I</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>;</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592417&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592418&type=
28.10933495
以及率失真函数
<math id="M3"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <msub> <mrow> <mi mathvariant="normal">n</mi> </mrow> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mo stretchy="false">|</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi mathvariant="double-struck">E</mi> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>
</mo> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mo stretchy="false">)</mo> <mo>≤</mo> <mi>D</mi> </mrow> </msub> <mi>I</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>;</mo> <mover accent="true"> <mi>X</mi> <mo>^</mo> </mover> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592396&type=
4.65666676
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592397&type=
46.73600006
。长期以来,由于经典信息论只研究语法信息,限制了通信科学的进一步发展。近年来,研究语义信息处理与传输的通信技术获得了学术界的普遍关注,语义通信开辟了未来通信技术发展的新方向,但还缺乏一般性的数学指导理论。为了解决这一难题,构建了语义信息论的理论框架,对语义信息的度量体系与语义通信的理论极限进行了系统性阐述。首先,通过深入分析各类信源的数据特征,以及各种下游任务的需求,总结归纳出语义信息的普遍属性——同义性。由此指出语义信息是语法信息的上级概念,是许多等效或相似语法信息的抽象特征,表征隐藏在数据或消息背后的含义或内容。将语义信息与语法信息之间的关系命名为同义映射,这是一种“一对多”映射,即一个语义符号可以由许多不同的语法符号表示。基于同义映射
<math id="M4"> <mi>f</mi> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592398&type=
2.96333337
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592399&type=
2.11666679
这一核心概念,引入语义熵
<math id="M5"> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mover> <mrow> <mi>U</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592400&type=
4.57200003
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592401&type=
9.22866726
作为语义信息的基本度量指标,表示为信源概率分布与同义映射的泛函。在此基础上,引入上/下语义互信息
<math id="M6"> <msup> <mrow> <mi>I</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mover> <mrow> <mi>X</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo>;</mo> <mover> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mover> <mrow> <mi>X</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo>;</mo> <mover> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592402&type=
4.82600021
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592403&type=
28.95599937
,语义
信道容量
<math id="M7"> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <msub> <mrow> <mi mathvariant="normal">x</mi> </mrow> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </msub> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <msub> <mrow> <mi mathvariant="normal">x</mi> </mrow> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msub> <msup> <mrow> <mi>I</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mover> <mrow> <mi>X</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo>;</mo> <mover> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592404&type=
6.01133299
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592405&type=
38.43866730
以及语义率失真函数
<math id="M8"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <msub> <mrow> <mi mathvariant="normal">n</mi> </mrow> <mrow> <mo stretchy="false">{</mo> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mo>
</mo> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> </mrow> </msub> <mo stretchy="false">}</mo> </mrow> </msub> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <msub> <mrow> <mi mathvariant="normal">n</mi> </mrow> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mo stretchy="false">|</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi mathvariant="double-struck">E</mi> <msub> <mrow> <mi>d</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mover> <mrow> <mi>x</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo>
</mo> <mover accent="true"> <mrow> <mover> <mrow> <mi>x</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> </mrow> <mo>^</mo> </mover> <mo stretchy="false">)</mo> <mo>≤</mo> <mi>D</mi> </mrow> </msub> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mover> <mrow> <mi>X</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo>;</mo> <mover accent="true"> <mrow> <mover> <mrow> <mi>X</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> </mrow> <mo>^</mo> </mover> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592406&type=
6.85799980
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592419&type=
60.70600128
,从而构建了完整的语义信息度量体系。这些语义信息度量是经典信息度量的自然延伸,都由同义映射约束,如果采用“一对一”映射,则可以退化为传统的信息度量。由此可见,语义信息度量体系包含语法信息度量,前者与后者具有兼容性。其次,证明了3个重要的语义编码定理,以揭示语义通信的性能优势。基于同义映射,引入新的数学工具——语义渐近均分(AEP),详细探讨了同义典型序列的数学性质,并应用随机编码和同义典型序列译码/编码,证明了语义无失真信源编码定理、语义信道编码定理和语义限失真信源编码定理。类似于经典信息论,这些基本编码定理也都是存在性定理,但它们指出了语义通信系统的性能极限,在语义信息论中起着关键作用。由同义映射和这些基本编码定理可以推断,语义通信系统的性能优于经典通信系统,即语义熵小于信息熵
<math id="M9"> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mover> <mrow> <mi>U</mi> </mrow> <mrow> <mi>˜</mi> </mrow> </mover> <mo stretchy="false">)</mo> <mo>≤</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592420&type=
4.57200003
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592421&type=
21.33600044
,语义信道容量大于经典信道容量
<math id="M10"> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>≥</mo> <mi>C</mi> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592422&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592423&type=
9.22866726
,以及语义率失真函数小于经典率失真函数
<math id="M11"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>≤</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592424&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592425&type=
20.40466690
。最后,讨论了连续条件下的语义信息度量。此时,同义映射转换为连续随机变量分布区间的划分方式。相应地,划分后的子区间被命名为同义区间,其平均长度定义为同义长度
<math id="M12"> <mi>S</mi> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592430&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592431&type=
1.77800000
。特别是对于限带高斯信道,得到了一个新的信道容量公式
<math id="M13"> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mi>B</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">g</mi> <mfenced open="[" close="]" separators="|"> <mrow> <msup> <mrow> <mi>S</mi> </mrow> <mrow> <mn mathvariant="normal">4</mn> </mrow> </msup> <mfenced separators="|"> <mrow> <mn mathvariant="normal">1</mn> <mo>+</mo> <mfrac> <mrow> <mi>P</mi> </mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mn mathvariant="normal">0</mn> </mrow> </msub> <mi>B</mi> </mrow> </mfrac> </mrow> </mfenced> </mrow> </mfenced> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592428&type=
8.97466660
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592429&type=
33.86666870
,其中,平均同义长度
<math id="M14"> <mi>S</mi> </math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592430&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63592431&type=
1.77800000
表征了信息的辨识能力。这一容量公式是经典信道容量的重要扩展,当
<math id="M15"> <mi>S</mi> <mo>=</mo> <mn mathvariant="normal">1</mn> </math>
http://notExist.jpg
2.28600001
http://notExist.jpg
7.11199999
时,该公式退化为著名的香农信道容量公式。综上所述,语义信息论依据同义映射这一语义信息的本质特征,构建了语义信息的度量体系,引入新的数学工具,证明了语义编码的基本定理,论证了语义通信系统的性能极限,揭示了未来语义通信的巨大性能潜力。
0
Views
103
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution