浏览全部资源
扫码关注微信
1. 南京理工大学 计算机与工程学院,江苏 南京 210094
2. 长沙理工大学 计算机与通信工程学院,湖南 长沙 410114
[ "吴佳英(1977-),女,湖南益阳人,副教授,主要研究方向为人工智能、模式识别、无线网络。" ]
[ "徐蔚鸿(1963-),男,湖南湘潭人,教授、博士生导师,主要研究方向为模式识别、人工智能与图像处理。" ]
[ "陈顺明(1988-),男,湖南郴州人,长沙理工大学硕士生,主要研究方向为无线网络、室内定位。" ]
[ "李平(1972-),男,湖南新化人,博士,长沙理工大学教授,主要研究方向为物联网、信息安全、数据挖掘。" ]
网络出版日期:2014-11,
纸质出版日期:2014-11-30
移动端阅览
吴佳英, 徐蔚鸿, 陈顺明, 等. 基于RSS典型性判定的室内定位算法研究[J]. 通信学报, 2014,35(Z2):140-146.
Jia-ying WU, Wei-hong XU, Shun-ming CHEN, et al. Indoor positioning algorithm research based on the typicality judgment of RSS[J]. Journal on communications, 2014, 35(Z2): 140-146.
吴佳英, 徐蔚鸿, 陈顺明, 等. 基于RSS典型性判定的室内定位算法研究[J]. 通信学报, 2014,35(Z2):140-146. DOI: 10.3969/j.issn.1000-436x.2014.z2.019.
Jia-ying WU, Wei-hong XU, Shun-ming CHEN, et al. Indoor positioning algorithm research based on the typicality judgment of RSS[J]. Journal on communications, 2014, 35(Z2): 140-146. DOI: 10.3969/j.issn.1000-436x.2014.z2.019.
在基于RSS指纹集的定位算法中,相似样本集的质量,是影响定位精度的一个关键性因素;而待定位点的RSS向量,则是影响相似样本点质量的一个重要元素。通过对D-RSS分布规律分析,提出了RSS典型性的概念,并且提出了基于RSS典型性判定的室内定位算法。该算法根据RSS的典型性特征与有效的相似样本点之间的关系,提出了 RSS 典型性的辨别方法以及与典型性相关的动态 K 值。通过实验证明,该算法不仅能完整地找出有效的相似样本点,排除非实质性相似点的干扰,而且在不同的定位场景中具有较强的适应性,同时具有较高的定位精度。
In the process of indoor location based on RSS fingerprint
the quality of the obtained similar point set is a key factor for a successful position.And the locating point’s RSS is an important reason which affects the quality of the similar point set.By analyzing the distribution of D-RSS
the concept of RSS’s typicality was proposed firstly
and an indoor localization algorithm based on typicality judgment of RSS was also presented.According to the principle that the RSS values and the effective similar sample points
a typicality discrimination method for RSS values and a self-adapting K value were presented.Confirmed by the experiments
the algorithm not only can find the effective similarity sample points completely
but also can eliminate the non-substantive similarities points
and then can adapt to the different scenes
then have the higher positioning accuracy.
HATAMI A . Application of Channel Modeling for Indoor Localization Using TOA and RSS [D ] . Worcester Polytechnic Institute , 2006 .
SPIRITO M A . On the accuracy of cellular mobile station location estimation [J ] . IEEE Tran Veh Tech , 2001 , 50 ( 3 ): 674 - 685 .
MILES S B , SARMA S E , WILLIAMS J R . RFID Technology and Applications [M ] . Cambridge University Press , 2008 .
LI B , WANG Y , LEE H K , et al . Method for yielding a database of location fingerprints in WLAN [J ] . IEEE Proc Commun , 2005 , 152 ( 5 ): 580 - 586 .
ASSAD M A , HEIDARI M , PAHLAVAN K . Effects of channel modeling on performance evaluation of Wi-Fi RFID localization using a laboratory testbed [A ] . IEEE Global Telecommunications Conference [C ] . 2007 . 366 - 370 .
YOUSSEF M A , AGRAWALA A , SHANKAR A U . WLAN location determination via clustering and probability distributions [A ] . IEEE International Conference on Pervasive Computing and Communications [C ] . 2003 . 143 - 150 .
LIN T N , LIN P C . Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks [J ] . International Conference on Wireless Networks , 2005 , 2 ( 6 ): 1569 - 1574 .
BATTITI R , NHAT T L , VILLANI A . Location-aware Computing:A Neural Network Model for Determining Location in Wireless LANs [R ] . Trento,Italy University of Trento , 2002 .
DUDA R O , HART P E , et al . Pattern Classification [M ] . Second Edition , John Wiley , 2000 .
MA J , LI X , TAO X , et al . Cluster filtered KNN:a WLAN based indoor positioning scheme [A ] . International Symposium on A World of Wireless,Mobile and Multimedia Networks [C ] . 2008 . 1 - 8 .
YU J K , LIU J Y . A KNN indoor positioning algorithm that weighted by the membership of fuzzy set [A ] . 2013 IEEE and Internet of Things,IEEE International Conference on and IEEE Cyber [C ] . 2013 . 1899 - 1903 .
SUN Y L , XUY B , MA L . KNN-FCM hybrid algorithm for indoor location in WLAN [A ] . Power Electronics and Intelligent Transportation System(PEITS),2009 2nd International Conference [C ] . 2009 . 251 - 254 .
WANG X F , HUANG D S . A novel density-based clustering framework by using level set method [J ] . Knowledge and Data Engineering , 2009 , 21 : 1515 - 1531 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构