浏览全部资源
扫码关注微信
西安电子科技大学 计算机网络与系统安全陕西省重点实验室,陕西 西安 710071) 2.西安电子科技大学 计算机学院,陕西 西安 710071
[ "董学文(1981-),男,湖北黄冈人,博士,西安电子科技大学副教授,主要研究方向为Web数据挖掘、社交网络信息分析、无线网络安全。" ]
[ "杨超(1979-),男,陕西西安人,博士,西安电子科技大学副教授、硕士生导师,主要研究方向为移动互联网、无线网络安全。" ]
[ "盛立杰(1976-),男,山西大同人,博士,西安电子科技大学副教授、硕士生导师,主要研究方向为未来互联网体系结构、软件定义网络SDN、移动互联网。" ]
[ "马建峰(1963-),男,陕西西安人,博士,西安电子科技大学教授、博士生导师,主要研究方向为移动互联网、网络安全、密码学。" ]
网络出版日期:2014-11,
纸质出版日期:2014-11-30
移动端阅览
董学文, 杨超, 盛立杰, 等. ESYN:基于动态模型的高效同步聚类算法[J]. 通信学报, 2014,35(Z2):86-93.
Xue-wen DONG, Chao YANG, Li-jie SHENG, et al. ESYN:efficient synchronization clustering algorithm based on dynamic synchronization model[J]. Journal on communications, 2014, 35(Z2): 86-93.
董学文, 杨超, 盛立杰, 等. ESYN:基于动态模型的高效同步聚类算法[J]. 通信学报, 2014,35(Z2):86-93. DOI: 10.3969/j.issn.1000-436x.2014.z2.012.
Xue-wen DONG, Chao YANG, Li-jie SHENG, et al. ESYN:efficient synchronization clustering algorithm based on dynamic synchronization model[J]. Journal on communications, 2014, 35(Z2): 86-93. DOI: 10.3969/j.issn.1000-436x.2014.z2.012.
基于动态同步模型,提出一种高效同步聚类ESYN算法。首先,根据非矢量网络的局部结构信息,提出节点相似度的定义,以准确描述节点间的链接密度;其次,利用OPTICS算法进行矢量化预处理,将非矢量网络转换为一维坐标序列;最后,在通用 Kuramoto 动态同步模型中,增加基于全局信息的耦合强度分析,同时不断增加同步半径,自动选取最优的聚类结果。在大量人工合成数据集和真实数据集上的实验结果表明算法聚类准确率较高。
Clustering is an important research field in data mining.Based on dynamical synchronization model
an efficient synchronization clustering algorithm ESYN is proposed.Firstly
based on local structure information of a non-vector network
a new concept vertex similarity is brought up to describe the link density between vertices.Secondly
the network is vectoried by OPTICS algorithm and turned into one-dimensional coordination sequence.Finally
global coupling analysis is applied to generalized Kuramoto synchronization model
synchronization radius is increased and the optimal clustering result is automatically selected.The experimental results on a large number of synthetic and real-world networks show that proposed algorithm achieves high accuracy.
GUAN J , GAN Y , WANG H . Discovering pattern-based subspace clusters by pattern tree [J ] . Knowledge-Based Systems , 2009 , 22 ( 8 ): 569 - 579 .
ZHU S , WANG D , LI T . Data clustering with size constraints [J ] . Knowledge-Based Systems , 2010 , 23 ( 8 ): 883 - 889 .
ESTER M , KRIEGEL H P , SANDER J , et al . A density-based algorithmfor discovering clusters in large spatial databases with noise [A ] . Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining [C ] . 1996 . 226 - 231 .
KARYPIS G , HAN E H , KUMAR V . Chameleon:hierarchical clusteringusing dynamic modeling [J ] . Computer , 1999 , 32 ( 8 ): 68 - 75 .
NEWMAN M E , GIRVAN M . Finding and evaluating community structurein networks [J ] . Physical review E , 2004 , 69 ( 2 ):026113.
CLAUSET A , NEWMAN M E , Moore C . Finding community structure invery large networks [J ] . Physical review E , 2004 , 70 ( 6 ): 6111 - 6116 .
LEUNG I X , HUI P , LIO P , et al . Towards real-time communitydetection in large networks [J ] . Physical Review E , 2009 , 79 ( 6 ): 6107 - 6117 .
NEWMAN M . Detecting community structure in networks [J ] . The European Physical Journal B-Condensed Matter and Complex System , 2004 , 38 ( 2 ): 321 - 330 .
DEKKER A H , TAYLOR R . Synchronization properties of trees in the Kuramoto model [J ] . SIAM Journal on Applied Dynamical Systems , 2013 , 12 ( 2 ): 596 - 617 .
BÖHM C , PLANT C , SHAO J , et al . Clustering by synchronization [A ] . Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C ] . 2010 . 583 - 592 .
黄健斌 , 白杨 , 康剑梅 , 等 . 一种基于同步动力学模型的网络社团发现方法 [J ] . 计算机研究与发展 , 2012 , 49 ( 10 ): 2198 - 2207 .
HUANG J B , BAI Y , KANG J M , et al . A network community detection method based on dynamic model of synchronization [J ] . Journal of Computer Research and Development , 2012 , 49 ( 10 ): 2198 - 2207 .
ANKERST M , BREUNIG M M , KRIEGEL H P , et al . OPTICS:orderingpoints to identify the clustering structure [J ] . ACM SIGMOD Record , 1999 , 28 ( 2 ): 49 - 60 .
KITSAK M , GALLOS L K , HAVLIN S , et al . Identification of influential spreaders in complex networks [J ] . Nature Physics , 2010 , 6 ( 11 ): 888 - 893 .
BRYAN K , LEISE T . The $25,000,000,000 eigenvector:The linear algebrabehind Google [J ] . Siam Review , 2006 , 48 ( 3 ): 569 - 581 .
GIRVAN M , NEWMAN E . Community structure in social and biologicalnetworks [J ] . PNAS , 2002 , 99 ( 12 ): 7821 - 7826 .
ZACHARY W W . An informationflow model for conflict and fission in small groups [J ] . Journal of anthropological research , 1977 , 33 ( 4 ): 452 - 473 .
VINH N X , EPPS J , BAILEY J . Information theoretic measures for clusterings comparison:is a correction for chance necessary [A ] . Proceedings of the 26th Annual International Conference on Machine Learning [C ] . ACM , 2009 . 1073 - 1080 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构