浏览全部资源
扫码关注微信
1. 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室,江苏 南京 210003
2. 南京工业大学 自动化与电气工程学院,江苏 南京 210009
[ "王堃(1981-),男,江苏南京人,博士,南京邮电大学副教授、硕士生导师,主要研究方向为无线通信与信息安全、普适计算、物联网与传感网技术、人工智能与数据挖掘等。" ]
[ "王琳琳(1990-),女,江苏连云港人,南京邮电大学硕士生,主要研究方向为人工智能与数据挖掘。" ]
[ "刘艳(1982-),女,江苏南京人,南京工业大学讲师,主要研究方向为物联网与传感网技术。" ]
[ "张玉华(1990-),男,江苏南通人,南京邮电大学硕士生,主要研究方向为人工智能与数据挖掘等。" ]
[ "吴蒙(1963-),男,上海人,博士,南京邮电大学教授、博士生导师,主要研究方向为无线通信与信息安全等。" ]
网络出版日期:2013-11,
纸质出版日期:2013-11-25
移动端阅览
王堃, 王琳琳, 刘艳, 等. 基于信息熵的改进PESA算法[J]. 通信学报, 2013,34(11):33-41.
Kun WANG, Lin-lin WANG, Yan LIU, et al. Improved PESA algorithm based on comentropy[J]. Communication journal, 2013, 34(11): 33-41.
王堃, 王琳琳, 刘艳, 等. 基于信息熵的改进PESA算法[J]. 通信学报, 2013,34(11):33-41. DOI: 10.3969/j.issn.1000-436x.2013.11.005.
Kun WANG, Lin-lin WANG, Yan LIU, et al. Improved PESA algorithm based on comentropy[J]. Communication journal, 2013, 34(11): 33-41. DOI: 10.3969/j.issn.1000-436x.2013.11.005.
针对PESA算法所需的计算运算量、计算难度及运算时间都随着解集数量的增加而急剧增加的问题,将熵值度量指标引入到PESA算法中,提出了基于信息熵的PESA算法(C-PESA
comentropy-based PESA)。该算法根据信息熵指标在量化度量Pareto解集的分布特性,判断种群进化是否到达成熟阶段,本算法迭代1300次时即到达成熟阶段,从而尽早结束了算法复杂的优化过程,在一定程度上简化了PESA算法的时间复杂度。仿真结果表明,随着进化种群数量的增长,C-PESA算法的计算量只是呈现线性增加,算法的计算时间缩短接近4倍,进化计算效率得到提高。
Aiming at the issue that the computational effort the complexity and the running time of PESA algorithm are increasing rapidly with the growth of the solutions set number
a comentropy-based PESA algorithm (C-PESA) by merg-ing the entropy value metric into PESA algorithm was proposed. According to the distributed characteristic of the entropy value metric over the Pareto solution set
the proposed algorithm could determine whether the population has developed to the mature stage
which is reached when the number iterations is 1 300 in C-PESA. Thereby
the optimization process can be finished as soon as possible
and in a certain extent
the time complexity of PESA was simplified. Simula-tion results show that the computational effort of C-PESA increases linearly with the rising number of solutions. Mean-while
the computation time is improved almost four times
and the evolutionary computation efficiency is also enhanced.
SALEM F A , PETER J F . Diversity management in evolutionary many-objective optimization [J ] . IEEE Trans on Evolutionary Compu-tation , San Jose , 2011 , 15 ( 2 ): 183 - 195 .
OLIVER S , ADRIANA L , CARLOS A . On the influence of the num-ber of objectives on the hardness of a multiobjective optimization problem [J ] . IEEE Transactions on Evolutionary Computatn , San Jose , 2011 , 15 ( 4 ): 444 - 455 .
SCHAFFER J D . Multiple objective optimization with vec eva-luated genetic algorithms [A ] . Proceedings of the International Confe-rence on Genetic Algorithms and Their Applications [C ] . tsburgh,PA,USA , 1985 . 93 - 100 .
CORNE D W , KNOWLES J D , OATES M J . The Pareto-envelope based selection algorithm for multi-objective optimization [A ] . Pro-ceedings of the International Conference on Parallel Problem Solving from Nature [C ] . Paris, France , 2000 . 839 - 848 .
公茂果 , 焦李成 , 杨咚咚 等 . 进化多目标优化算法研究 [J ] . 软件学报 , 2009 , 20 ( 2 ): 271 - 289 .
GONG M G , JIAO L C , YANG D D , et al . Research on evolutionary multi-objective optimization algorithms [J ] . Journal of Software , 2009 , 20 ( 2 ): 271 - 289 .
http://en.wikipedia.org/wiki/Big_O_notation http://en.wikipedia.org/wiki/Big_O_notation [EB/OL ] .
DAVID R W , ANDREA A , JOHN A C . Evolutionary improvement of programs [J ] . IEEE Transactions on Ecolutionary Computation , 2011 , 15 ( 4 ): 515 - 538 .
ABIDO M A . Two-level of nondominated solutions approach to mul-tiobjective particle swarm optimization [A ] . Proceedings of Genetic and Evolutionary Computation Conference [C ] . London , 2007 . 728 - 733 .
RODRIGO P , LEANDRO N , DE C , et al . Neural network ensembles:immune-inspired approaches to the diversity of components [J ] . Natu-ral Computing , 2010 , 9 ( 3 ): 625 - 653 .
LOURDES A , JUAN J M . Diversity through multiculturality: assess-ing migrant choice policies in an island model [J ] . IEE Transactions on Ecolutionary Computation , 2011 , 15 ( 4 ): 543 - 560 .
SAXENA D K , DEB K . Non-Linear dimensionality reduction proce-dure for certain large-dimensional multi-objective optimization prob-lems: employing correntropy and a novel maximum variance unfold-ing [A ] . Proceedings of the 4th International Conference on Evolutio-nary Multi-Criterion Optimization [C ] . Sendai, Japan , 2007 . 772 - 787 .
SHANNON C E . A mathematical theory of communication [J ] . Bell System Technical Journal , 1948 , 27 : 379 - 429 .
TAN K C , GOH C K , MAMUN A A , et al . An evolutionary artificial immune system for multi-objective optimization [J ] . European Journal of Operational Research , 2008 , 187 : 371 - 392 .
ALI F M , SHAPOUR A . On the entropy of multi-objective design optimization solution set [A ] . Proceedings of Design En ineering Technical Conferences and Computer and Information in ngineering Conference [C ] . Chicago, USA , 2002 . 829 - 838 .
CORNE D W , JERRAM N R , KNOWLES J D , et al . PESA-II: re-gion-based selection in evolutionary multi-objective optimization [A ] . Proceedings of the Genetic and Evolutionary Computatio Confe-rence [C ] . San Francisco, USA , 2001 . 283 - 290 .
MIKKEL T J . Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms [J ] . IEEE Transactions on Evolutionary Computation , 2003 , 7 ( 5 ): 503 - 515 .
ZHANG Q F , LI H . MOEA/D: a multiobjective evolutionary algo-rithm based on decomposition [J ] . IEEE Transactions on Evolutionary Computation , 2007 , 11 ( 6 ): 712 - 731 .
http://en.wikipedia.org/wiki/Standard_deviation http://en.wikipedia.org/wiki/Standard_deviation [EB/OL ] .
http://www.aboutus.org/Jmetal.com http://www.aboutus.org/Jmetal.com [EB/OL ] .
KURSAWE F . A variant of evolution strategies for vector optimiza-tion [A ] . Proceedings of International Conference on Parallel Problem Solving from Nature [C ] . London, UK , 1991 . 193 - 197 .
ZITZLER E , DEB K , THIELE L . Comparison of multi-objective evolutionary algorithms: empirical results [J ] . Evoluti ry Computa-tion , 2000 , 8 ( 2 ): 173 - 195 .
VAN VELDHUIZEN D A , LAMONT G B . Evolutionary computation and convergence to a pareto front [A ] . Late Breaking Papers at the Ge-netic Programming 1998 Conference [C ] . California, USA , 1998 . 221 - 228 .
CAO Y . Matlab central file exchange: hypervolume indicator [EB/OL ] . http://www.mathworks.fr/matlabcentral/fileexchange/ http://www.mathworks.fr/matlabcentral/fileexchange/ , 2008 .
VELDHUIZEN D A , VAN LAMONT G B . Multiobjective Evolutio-nary Algorithm Research: A History and Analysis [R ] . Techique Re-port , 1998 .
DEB K , AGRAWAL R B . Simulated binary crossover for continuous search space [J ] . Complex Systems , 1994 , 1 ( 9 ): 115 - 148 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构