浏览全部资源
扫码关注微信
1. 杭州电子科技大学 信息与控制研究所,浙江 杭州 310018
2. 浙江省环境监测中心,浙江 杭州 310012
[ "蒋鹏(1975-),男,浙江衢州人,博士,杭州电子科技大学教授、博士生导师,主要研究方向为无线传感器网络、物联网技术及其应用、嵌入式系统及其应用、智能仪表。" ]
[ "宋华华(1986-),男,浙江湖州人,杭州电子科技大学硕士生,主要研究方向为无线传感器网络。" ]
[ "林广(1975-),男,浙江温州人,硕士,浙江省环境监测中心高级工程师,主要研究方向为环境监测、环境质量评价。" ]
网络出版日期:2013-11,
纸质出版日期:2013-11-25
移动端阅览
蒋鹏, 宋华华, 林广. 基于粒子群优化和M-H抽样粒子滤波的传感器网络目标跟踪方法[J]. 通信学报, 2013,34(11):8-17.
Peng JIANG, Hua-hua SONG, Guang LIN. Target tracking algorithm for wireless sensor networks based on particle swarm optimization and metropolis-hasting sampling particle filter[J]. Communication journal, 2013, 34(11): 8-17.
蒋鹏, 宋华华, 林广. 基于粒子群优化和M-H抽样粒子滤波的传感器网络目标跟踪方法[J]. 通信学报, 2013,34(11):8-17. DOI: 10.3969/j.issn.1000-436x.2013.11.002.
Peng JIANG, Hua-hua SONG, Guang LIN. Target tracking algorithm for wireless sensor networks based on particle swarm optimization and metropolis-hasting sampling particle filter[J]. Communication journal, 2013, 34(11): 8-17. DOI: 10.3969/j.issn.1000-436x.2013.11.002.
针对实际应用条件下传感器节点的观测数据与目标动态参数间呈现为非线性关系的特性,提出了一种基于粒子群优化和M-H抽样粒子滤波的传感器网络目标跟踪方法。该方法采用分布式结构,在动态网络拓扑结构下,由粒子群优化和M-H抽样技术实现滤波中的重抽样过程,抑制粒子退化现象,并通过粒子间共享历史信息,降低单个粒子历史状态间的相关性使各粒子能快速收敛至最优分布,从而实现高精度的目标跟踪效果。仿真结果表明,相比现有的基于信息粒子滤波和并行粒子滤波技术的传感器网络目标跟踪方法,所提出的方法能降低网络总能耗,同时保证目标跟踪的精度。
For the characteristic of the nonlinear relationship between the observation information of sensor nodes and the target dynamic parameters under the real application conditions
a target tracking algorithm for wireless sensor networks based on particle swarm optimization and Metropolis-Hasting sampling particle filter was proposed. Distributed archi-tecture is adopted in this target tracking scheme. And under the dynamic network topology
particle swarm optimization and Metropolis-Hasting sampling are introduced into the resampling period to reduce sample degeneracy. In order to achieve the goal of high-precision tracking performance
the history information is shared among the particles to reduce the correlation between the history states of a single particle
so that the particles can rapidly converge to an optimal dis-tribution. The simulations corroborate that compared with currently existing target tracking schemes based on the tech-nology of information particle filter and parallel particle filter
the proposed scheme can reduce the total energy consump-tion
while ensuring the accuracy of target tracking.
MUSICKI D , KAUNE R , KOCH W . Mobile emitter geolocation and tracking using TDOA and FDOA measurements [J ] . IEEE Tra ions on Signal Processing , 2010 , 58 ( 3 ): 1863 - 1874 .
CHEN J , SALIM M B , MATSUMOTO M . A single mobile target tracking in voronoi-based clustered wireless sensor network [J ] . Journal of Information Processing Systems , 2011 , 7 ( 1 ): 17 - 28 .
SCHMID J , BEUTLER F , NOACK B , et al . An Experimental Evalua-tion of Position Estimation Methods for Person Localization in Wire-less Sensor Networks [M ] . Bonn:Springer Berlin Heidelberg , 2011 .
KUMAR S , PRAKASH J , KANAGASABAPATHY P . A Critical Evaluation and Experimental Verification of Extended Kalman Filter, Unscented Kalman Filter and Neural State Filter for State Estimation of Three Phase Induction Motor [J ] . Applied Soft Computing , 2011 , 11 ( 3 ): 3199 - 3208 .
OKA A , LAMPE L . Distributed target tracking using signal strength measurements by a wireless sensor network [J ] . IEEE Jou l on Se-lected Areas in Communications , 2010 , 28 ( 7 ): 1006 - 1015 .
USTEBAY D , COATES M , RABBAT M . Distributed auxiliary par-ticle filters using selective gossip [A ] . IEEE Internatio l Conference on Acoustics, Speech and Signal Processing [C ] . Prague, Czech Re-public , 2011 . 3296 - 3299 .
MURANGIRA A , MUSSO C , DAHIA K , et al . Robust regularized particle filter for terrain navigation [A ] . The 14th International Confe-rence on Information Fusion [C ] . Chicago, USA , 2011 . 1 - 8 .
CARLONE L , NG M K , DU J , et al . Simultaneous localization and mapping using rao-blackwellized particle filters in multi-robot sys-tems [J ] . Journal of Intelligent & Robotic Systems , 2011 , 63 ( 2 ): 283 - 307 .
邹冈 , 石章松 , 刘忠 . 传感器网络中的分布式粒子滤波被动跟踪算法比较研究 [J ] . 传感技术学报 , 2007 , 20 ( 6 ): 1344 - 1348 .
ZOU G , SHI Z S , LIU Z . Comparison of decentralized particle filter algorithms in sensor networks for passive tracking [J ] . Chinese Journal of Sensors and Actuators , 2007 , 20 ( 6 ): 1344 - 1348 .
OLFATI-SABER R , SANDELL N F . Distributed tracking in sensor networks with limited sensing range [A ] . American Control Confe-rence [C ] . Washington, USA , 2008 . 3157 - 3162 .
AHMED N , RUTTEN M , BESSELL T , et al . Detection and tracking using particle-filter-based wireless sensor networks [J ] . IEEE Transac-tions on Mobile Computing , 2010 , 9 ( 9 ): 1332 - 1345 .
JIANG P , LI S Q . A data compression algorithm for wireless sensor networks based on an optimal order estimation model and distributed coding [J ] . Sensors , 2010 , 10 ( 10 ): 9065 - 9083 .
CABALLERO F , MERINO L , MAZA I , et al . A particle filtering method for wireless sensor network localization with an aerial robot beacon [A ] . IEEE International Conference on Robotics and Automation [C ] . Pasadena, USA , 2008 . 596 - 601 .
OZDEMIR O , NIU R , VARSHNEY P K . Tracking in wireless sensor networks using particle filtering: physical layer cons tions [J ] . IEEE Transactions on Signal Processing , 2009 , 57 ( 5 ): 1987 - 1999 .
ALRASHIDI M R , EI-HAWARY M E . A survey of particle swarm optimization applications in electric power systems [J ] . IEEE Transac-tions on Evolutionary Computation , 2009 , 13 ( 4 ): 913 - 918 .
HOLDEN L , HAUGE R , HOLDEN M . Adaptive independent metro-polis-hastings [J ] . The Annals of Applied Probability , 2009 , 19 ( 1 ): 395 - 413 .
0
浏览量
906
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构