浏览全部资源
扫码关注微信
1. 国家数字交换系统工程技术研究中心,河南 郑州 450002
2. 中国人民解放军战略支援部队信息工程大学,河南 郑州 450002
[ "张震(1985−),男,山东济宁人,博士,国家数字交换系统工程技术研究中心讲师,主要研究方向为网络测量、网络管理。" ]
[ "魏鹏(1994−),男,湖南衡阳人,国家数字交换系统工程技术研究中心硕士生,主要研究方向为新型网络体系结构。" ]
[ "李玉峰(1976−),男,山东烟台人,博士,国家数字交换系统工程技术研究中心副教授,主要研究方向为宽带信息网络、高速路由器核心技术。" ]
[ "兰巨龙(1962−),男,河北张北人,博士,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为宽带信息网络。" ]
[ "徐萍(1983−),女,江西永新人,中国人民解放军战略支援部队信息工程大学讲师,主要研究方向为信息素质教育、信息资源建设。" ]
[ "陈博(1989−),男,河南商丘人,国家数字交换系统工程技术研究中心博士生、讲师,主要研究方向为网络安全。" ]
网络出版日期:2018-12,
纸质出版日期:2018-12-25
移动端阅览
张震, 魏鹏, 李玉峰, 等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报, 2018,39(12):60-68.
Zhen ZHANG, Peng WEI, Yufeng LI, et al. Feature selection algorithm based on improved particle swarm joint taboo search[J]. Journal on communications, 2018, 39(12): 60-68.
张震, 魏鹏, 李玉峰, 等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报, 2018,39(12):60-68. DOI: 10.11959/j.issn.1000−436x.2018287.
Zhen ZHANG, Peng WEI, Yufeng LI, et al. Feature selection algorithm based on improved particle swarm joint taboo search[J]. Journal on communications, 2018, 39(12): 60-68. DOI: 10.11959/j.issn.1000−436x.2018287.
针对入侵检测中数据特征维度高的问题,提出了改进粒子群联合禁忌搜索(IPSO-TS)的特征选择算法。采用遗传算子对粒子群算法进行了改进,得到了特征选择初始最优解;对该解进行禁忌搜索(TS)得到了特征子集的全局优化解。基于KDD CUP 99数据集的实验结果表明,相较遗传算子整合粒子群算法(CMPSO)、粒子群算法(PSO)和粒子群联合禁忌算法,IPSO-TS减少了至少29.2%的特征,缩短了至少15%的平均检测时间,提高了至少2.96%的平均分类准确率。
To solve the problem of high data feature dimensionality in intrusion detection
a feature selection algorithm based on improved particle swarm optimization taboo search (IPSO-TS) was proposed. The genetic algorithm was used to improve the particle swarm optimization
and the initial optimal solution of feature selection was obtained. A taboo search (TS) algorithm was used for initial optimal solution to obtain the global optimal solution of the feature subset. Compared with genetic algorithm integrated particle swarm optimization (CMPSO)
particle swarm optimization (PSO) and PSO-TS algorithms
experimental results based on the KDD CUP 99 dataset show that the method reduces the features by about 29.2%
shortens about 15% of the average detection time
and increases about 2.96% of the average classification accuracy.
WANG C R , XU R F , LEE S J , et al . Network intrusion detection using equality constrained-optimization-based extreme learning machines [J ] . Knowledge-Based Systems , 2018 .
武小年 , 彭小金 , 杨宇洋 , 等 . 入侵检测中基于 SVM 的两级特征选择方法 [J ] . 通信学报 , 2015 , 36 ( 4 ): 1271 - 1278 .
WU X N , PENG X J , YANG Y Y , et al . Two-level feature selection method based on SVM in intrusion detection [J ] . Chinese Journal of Communications , 2015 , 36 ( 4 ): 1271 - 1278 .
张俐 , 王枞 . 基于最大相关最小冗余联合互信息的多标签特征选择算法 [J ] . 通信学报 , 2018 ( 5 ).
ZHANG L , WANG C . Multi-label feature selection algorithm based on maximum correlation minimum redundant joint mutual information [J ] . Transactions of Communications , 2018 ( 5 ).
VIEIRA S M , MENDONCA L F , FARINHA G J , et al . Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients [J ] . Applied Soft Computing , 2013 , 13 ( 8 ): 3494 - 3504 .
XUE B , ZHANG M , BROWNE W N , et al . A survey on evolutionary computation approaches to feature selection [J ] . IEEE Transactions on Evolutionary Computation , 2016 , 20 ( 4 ): 606 - 626 .
GHAMISI P , BENEDIKTSSON J A . Feature selection based on hybridization of genetic algorithm and particle swarm optimization [J ] . IEEE on Geoscience and Remote Sensing Letters , 2015 , 12 ( 2 ): 309 - 313 .
董跃华 , 刘力 . 基于自适应改进粒子群优化的数据离散化算法 [J ] . 计算机应用 , 2016 , 26 ( 1 ): 188 - 193 .
DONG Y H , LIU L . Data discretization algorithm based on adaptive improved particle swarm optimization [J ] . Journal of Computer Applications , 2016 , 26 ( 1 ): 188 - 193 .
TRAN B , XUE B , ZHANG M . A new representation in PSO for discretization-based feature selection [J ] . IEEE Transactions on Cybernetics , 2017 , pp ( 99 ): 1 - 14 .
NGUYEN H B , XUE B , ANDREAE P , et al . Particle swarm optimisation with genetic operators for feature selection [C ] . Evolutionary Computation. IEEE , 2017 : 286 - 293 .
翟俊海 , 刘博 , 张素芳 . 基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J]. 智能系统学报 [J ] . 智能系统学报 , 2017 , 12 ( 3 ): 397 - 404 .
ZHAI J H , LIU B , ZHANG S F . Feature selection based on rough classification relative classification information entropy and particle swarm optimization [J ] . Journal of Intelligent Systems , 2017 , 12 ( 3 ): 397 - 404 .
刘杨 , 田学锋 , 詹志辉 . 粒子群优化算法惯量权重控制方法的研究[J]. 智能系统学报 [J ] . 南京大学学报 : 自然科学版 , 2011 , 47 ( 4 ): 364 - 371 .
LIU Y , TIAN X F , ZHAN Z H . tudy on inertia weight control method based on particle swarm optimization algorithm [J ] . Journal of Nanjing University : Nature Science , 2011 , 47 ( 4 ): 364 - 371 .
ZHANG Q , XUE S . An improved multi-objective particle swarm optimization algorithm [J ] . Mathematical Problems in Engineering , 2017 , 28 ( 7 ): 482 - 490 .
BHARTI K K , SINGH P K . Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering [J ] . Applied Soft Computing , 2016 , 43 : 20 - 34 .
LAI X , YUE D , HAO J K , et al . Solution-based tabu search for the maximum min-sum dispersion problem [J ] . Information Sciences , 2018 .
KUO S Y , CHOU Y H . Entanglement-enhanced quantum-inspired tabu search algorithm for function optimization [J ] . IEEE Access , 2017 , pp ( 99 ): 1 - 1 .
HOU N , HE F , CHEN Y . An adaptive neighborhood taboo search on GPU for Hardware/Software Co-design [C ] // International Conference on Computer Supported Cooperative Work in Design . 2016 : 239 - 244 .
JANARTHANAN T , ZARGARI S . Feature selection in UNSW-NB15 and KDDCUP'99 datasets [C ] // International Symposium on Industrial Electronics . 2017 : 1881 - 1886 .
ZHANG S , LI X , ZONG M , et al . Learning k, for kNN classification [J ] . ACM Transactions on Intelligent Systems and Technology , 2017 , 8 ( 3 ): 43 .
DAS S , LIU Y , ZHANG W , et al . Semantics-based online malware detection: towards efficient real-time protection against malware [J ] . IEEE Transactions on Information Forensics and Security , 2017 , 11 ( 2 ): 289 - 302 .
ZHANG Y , YANG A , XIONG C , et al . Feature selection using data envelopment analysis [J ] . Knowledge-Based Systems , 2014 , 64 ( 64 ): 70 - 80 .
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构