
浏览全部资源
扫码关注微信
1.南昌理工学院电子信息工程学院,江西 南昌 330044
2.南昌工程学院信息工程学院,江西 南昌 330099
[ "罗中华(1971- ),男,江西南昌人,南昌理工学院教授,主要研究方向为通信与信息系统。" ]
[ "左富豪(1999- ),男,河南周口人,南昌工程学院硕士生,主要研究方向为阵列信号处理。" ]
[ "樊棠怀(1962- ),男,江西修水人,博士,南昌理工学院教授,主要研究方向为信息获取与处理。" ]
[ "饶伟(1982- ),男,江西乐安人,博士,南昌工程学院教授、硕士生导师,主要研究方向为阵列信号处理、自适应信号处理。" ]
收稿日期:2025-02-07,
修回日期:2025-06-05,
纸质出版日期:2025-06-25
移动端阅览
罗中华,左富豪,樊棠怀等.三维稀疏阵列及其基于耦合张量分解的DOA估计[J].通信学报,2025,46(06):270-284.
LUO Zhonghua,ZUO Fuhao,FAN Tanghuai,et al.3D sparse array and its DOA estimation based on coupled tensor decomposition[J].Journal on Communications,2025,46(06):270-284.
罗中华,左富豪,樊棠怀等.三维稀疏阵列及其基于耦合张量分解的DOA估计[J].通信学报,2025,46(06):270-284. DOI: 10.11959/j.issn.1000-436x.2025112.
LUO Zhonghua,ZUO Fuhao,FAN Tanghuai,et al.3D sparse array and its DOA estimation based on coupled tensor decomposition[J].Journal on Communications,2025,46(06):270-284. DOI: 10.11959/j.issn.1000-436x.2025112.
为提高信号二维波达方向(DOA)估计性能,提出了一种三维稀疏阵列结构及其基于耦合张量分解的DOA估计方法。利用子阵信号的二阶统计量构建了一个虚拟的、在
z
轴方向阵元呈稀疏分布的“十”字形立体阵。分析表明,当阵列使用
<math id="M1"><mfrac><mrow><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn mathvariant="normal">5</mn><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></mfrac><mo>+</mo><mn mathvariant="normal">3</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84332000&type=
6.77333355
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84332016&type=
19.47333336
(
N
为大于2的奇数)个物理阵元时,其对应的虚拟阵在
x
和
y
轴方向的阵列孔径均为(
N
3
+2
N
-1)
d
,在
z
轴方向的阵列孔径为(
N
3
+3
N
)
d
。为充分利用虚拟阵的大孔径来提升信号DOA估计性能,并消除
z
轴方向阵元间距大于
d
而引起的相位模糊,提出了借助耦合张量分解解决相位模糊并实现DOA估计的方法。理论分析和仿真结果表明,在相同的物理阵元数下,相较于现有三维阵列,由于新方法具有更大的阵列孔径从而具有更优的估计性能。
To improve the performance of two-dimensional direction-of-arrival (DOA) estimation of signals
a three-dimensional sparse array structure and its coupled tensor decomposition-based DOA estimation method was proposed. By utilizing the second-order statistics of the signals from these subarrays
a virtual three-dimensional cross array was constructed
where the element spacing in the
z
-axis direction was sparse. Analysis showed that when
<math id="M2"><mfrac><mrow><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn mathvariant="normal">5</mn><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></mfrac><mo>+</mo><mn mathvariant="normal">3</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84332039&type=
6.77333355
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84332002&type=
19.47333336
(where
N
was an odd number greater than 2) physical elements were used in the array
the corresponding virtual array possessed an aperture of (
N
3
+2
N
-1)
d
in the
x
-axis and
y-
axis directions and (
N
3
+3
N
)
d
in the
z
-axis direction. To fully exploit the large array aperture of the virtual array for enhancing DOA estimation performance and eliminating phase ambiguity caused by the element spacing greater than
d
in the
z
-axis direction
a method using coupled tensor decomposition for resolving phase ambiguity and achieving DOA estimation was developed. Theoretical analysis and simulation results demonstrate that
when the number of physical elements used in arrays is identical
the proposed method can yield a better estimation performance than existing three-dimensional arrays
because it has a larger array aperture.
ZHANG X F , XU L Y , XU L , et al . Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC [J ] . IEEE Communications Letters , 2010 , 14 ( 12 ): 1161 - 1163 .
LIU J , ZHOU W D , JUWONO F H , et al . Reweighted smoothed l 0 -norm based DOA estimation for MIMO radar [J ] . Signal Processing , 2017 , 137 : 44 - 51 .
ZHANG W , LIU W , WANG J , et al . Computationally efficient 2-D DOA estimation for uniform rectangular arrays [J ] . Multidimensional Systems and Signal Processing , 2014 , 25 ( 4 ): 847 - 857 .
CHEN H , HOU C P , ZHU W P , et al . ESPRIT-like two-dimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization [J ] . Signal Processing , 2017 , 141 : 48 - 56 .
ZHOU M , ZHANG X F , QIU X F , et al . Two-dimensional DOA estimation for uniform rectangular array using reduced-dimension propagator method [J ] . International Journal of Antennas and Propagation , 2015 , 2015 ( 1 ): 485351 .
XU F , ZHENG H , VOROBYOV S A . Tensor-based 2-D DOA estimation for L-shaped nested array [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2024 , 60 ( 1 ): 604 - 618 .
ZHANG Y M , JIANG L J . A direct data approach to joint 2-D DOA and frequency estimation with L-shaped array [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2023 , 59 ( 4 ): 3684 - 3694 .
LABBAF N , OSKOUEI H R D , ABEDI M R . Robust DoA estimation in a uniform circular array antenna with errors and unknown parameters using deep learning [J ] . IEEE Transactions on Green Communications and Networking , 2023 , 7 ( 4 ): 2143 - 2152 .
HENG W , ZHANG X F , GONG P , et al . DOA estimation for coprime linear arrays: an ambiguity-free method involving full DOFs [J ] . IEEE Communications Letters , 2017 , 22 ( 3 ): 562 - 565 .
干鹏 . 非均匀阵列的信号处理算法研究 [D ] . 成都 : 电子科技大学 , 2018 .
GAN P . Research on signal processing algorithm of non-uniform array [D ] . Chengdu : University of Electronic Science and Technology of China , 2018 .
PAL P , VAIDYANATHAN P P . Nested arrays in two dimensions, part I: geometrical considerations [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 9 ): 4694 - 4705 .
WU Q H , SUN F G , LAN P , et al . Two-dimensional direction-of-arrival estimation for co-prime planar arrays: a partial spectral search approach [J ] . IEEE Sensors Journal , 2016 , 16 ( 14 ): 5660 - 5670 .
SI W J , ZENG F H , QU Z Y , et al . Two-dimensional DOA estimation via a novel sparse array consisting of coprime and nested subarrays [J ] . IEEE Communications Letters , 2020 , 24 ( 6 ): 1266 - 1270 .
REN M J , HU G P , SHI J P , et al . Generalized and symmetric coprime planar array for direction of arrival estimation [J ] . IET Radar , Sonar & Navigation, 2022 , 16 ( 6 ): 961 - 969 .
饶伟 , 桂宇风 , 李旦 . 基于张量的互质面阵信号处理方法 [J ] . 通信学报 , 2020 , 41 ( 8 ): 99 - 109 .
RAO W , GUI Y F , LI D . Tensor-based approach to the co-prime planar array signal processing [J ] . Journal on Communications , 2020 , 41 ( 8 ): 99 - 109 .
张彦奎 , 王大鸣 , 耿卫 , 等 . 基于双向传播算子的互质面阵二维波达方向估计 [J ] . 电子学报 , 2019 , 47 ( 3 ): 576 - 583 .
ZHANG Y K , WANG D M , GENG W , et al . Two-dimensional DOA estimation with coprime rectangular array using bi-directional propagator method [J ] . Acta Electronica Sinica , 2019 , 47 ( 3 ): 576 - 583 .
ABOUMAHMOUD I , MUQAIBEL A , ALHASSOUN M , et al . A review of sparse sensor arrays for two-dimensional direction-of-arrival estimation [J ] . IEEE Access , 2021 , 9 : 92999 - 93017 .
MORIYA H , ICHIGE K , ARAI H , et al . High-resolution 2-D DOA estimation by 3-D array configuration based on CRLB formulation [C ] // Processing of the 2012 IEEE 11th International Conference on Signal Processing . Piscataway : IEEE press , 2012 : 136 - 139 .
VU D T , RENAUX A , BOYER R , et al . A Cramér Rao bounds based analysis of 3D antenna array geometries made from ULA branches [J ] . Multidimensional Systems and Signal Processing , 2013 , 24 ( 1 ): 121 - 155 .
GONG P , ZHANG X F , ZHAI H . DOA estimation for generalized three dimensional coprime arrays: a fast-convergence quadrilinear decomposition algorithm [J ] . IEEE Access , 2018 , 6 : 62419 - 62431 .
GONG P , AHMED T , LI J F . Three-dimensional coprime array for massive MIMO: array configuration design and 2D DOA estimation [J ] . Wireless Communications and Mobile Computing , 2020 ( 1 ): 2686257 .
GONG P , CHEN X X . Computationally efficient direction-of-arrival estimation algorithms for a cubic coprime array [J ] . Sensors , 2021 , 22 ( 1 ): 136 .
KOLDA T G , BADER B W . Tensor decompositions and applications [J ] . SIAM Review , 2009 , 51 ( 3 ): 455 - 500 .
KRUSKAL J B . Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics [J ] . Linear Algebra and Its Applications , 1977 , 18 ( 2 ): 95 - 138 .
RAO W , LI D , ZHANG J Q . A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom [J ] . IEEE Signal Processing Letters , 2018 , 25 ( 2 ): 1 - 5 .
LI Y , ZHANG J Q . Mode-subspace projection of a tensor for multidimensional harmonic parameter estimations [J ] . IEEE Transactions on Signal Processing , 2013 , 61 ( 11 ): 3002 - 3014 .
SØRENSEN M , LATHAUWER L D D . Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(L_r, n, L_r, n, 1) terms: -part I: uniqueness [J ] . SIAM Journal on Matrix Analysis and Applications , 2015 , 36 ( 2 ): 496 - 522 .
SØRENSEN M , DOMANOV I , LATHAUWER L D . Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-( L_r, n, L_r, n, 1) terms: -part II: algorithms [J ] . SIAM Journal on Matrix Analysis and Applications , 2015 , 36 ( 3 ): 1015 - 1045 .
PAL P , VAIDYANATHAN P P . Nested arrays in two dimensions, part II: application in two dimensional array processing [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 9 ): 4706 - 4718 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621