浏览全部资源
扫码关注微信
1.重庆邮电大学通信与信息工程学院,重庆 400065
2.中国电信股份有限公司重庆分公司,重庆 401120
[ "冉鑫怡(1998- ),女,重庆人,重庆邮电大学博士生,主要研究方向为通感一体化、人工智能、智能反射面等。" ]
[ "陈前斌(1967- ),男,四川营山人,博士,重庆邮电大学教授、博士生导师,主要研究方向为通信网络、移动通信、通感一体化等。" ]
[ "徐勇军(1986- ),男,湖北赤壁人,博士,重庆邮电大学教授、博士生导师,主要研究方向为通感一体化、人工智能、智能反射面、卫星通信等。" ]
[ "左文科(1983- ),男,辽宁凌源人,中国电信股份有限公司重庆分公司工程师,主要研究方向为通感一体化、人工智能等。" ]
[ "赵耘(1991- ),男,四川绵阳人,中国电信股份有限公司重庆分公司工程师,主要研究方向为通感一体化、人工智能等。" ]
陈莉(1979- ),女,四川泸州人,重庆邮电大学工程师,主要研究方向为信号与信息处理、物联网通信等。
收稿日期:2025-04-23,
修回日期:2025-05-27,
纸质出版日期:2025-06-25
移动端阅览
冉鑫怡,陈前斌,徐勇军等.基于深度学习的通感一体化系统综述[J].通信学报,2025,46(06):233-250.
RAN Xinyi,CHEN Qianbin,XU Yongjun,et al.Survey on deep learning-based integrated sensing and communication systems[J].Journal on Communications,2025,46(06):233-250.
冉鑫怡,陈前斌,徐勇军等.基于深度学习的通感一体化系统综述[J].通信学报,2025,46(06):233-250. DOI: 10.11959/j.issn.1000-436x.2025103.
RAN Xinyi,CHEN Qianbin,XU Yongjun,et al.Survey on deep learning-based integrated sensing and communication systems[J].Journal on Communications,2025,46(06):233-250. DOI: 10.11959/j.issn.1000-436x.2025103.
随着无线通信与雷达感知技术的深度融合,通感一体化(ISAC)通过共享硬件平台与频谱资源,在提升系统效率方面展现出显著潜力。然而,传统ISAC依赖先验模型和专家知识,难以应对动态环境下的实时通信与感知需求。近年来,深度学习的快速发展为破解这一困境提供了新范式,使得系统能够更有效地处理大量数据,实现自适应学习,并在复杂环境中做出智能决策,进而优化系统性能。为此,针对基于深度学习的ISAC展开综述。首先,介绍了ISAC原理、系统模型、网络架构和技术方案类型;其次,阐述了ISAC主要采用的深度学习模型架构;然后,分析了深度学习在ISAC信道估计、信道编码、资源分配、人体检测、目标识别与追踪等典型场景的研究现状;最后,探讨了深度学习驱动的ISAC所面临的技术挑战和未来方向。此外,上述研究对推动6G网络通信感知深度融合、促进智能网络全要素协同发展,具有重要的理论意义与现实价值。
With the deep integration of wireless communication and radar sensing technologies
integrated sensing and communication (ISAC) shares hardware platforms and spectrum resources. It has demonstrated significant potential for enhancing system efficiency. However
traditional ISAC relying on prior models and expert knowledge has struggled to address real-time communication and sensing demands in dynamic environments. The rapid development of deep learning recently provided a novel paradigm to resolve these limitations
enabling systems to process massive data more effectively
achieve adaptive learning
and make intelligent decisions in complex environments
thereby optimizing system performance. A comprehensive review was conducted on deep learning-based ISAC. Firstly
the principles
the system model
the network architecture
and the types of technical solutions of ISAC were introduced. Then
the mainly adopted deep learning model architectures in ISAC were analyzed. Furthermore
the research situation of deep learning in typical scenarios such as channel estimation
channel coding
resource allocation
human detection
and target recognition and tracking was systematically investigated. Finally
key technical challenges and future directions in deep learning-driven ISAC were discussed. The research contributed to the deep integration of communication and sensing in 6G networks and facilitated the coordinated development of intelligent networks
holding important theoretical and practical value.
NGO Q T , TANG Z F , JAYAWICKRAMA B , et al . Timeliness of information in 5G nonterrestrial networks: a survey [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 21 ): 34652 - 34675 .
XU Y J , TIAN Q Y , CHEN Q B , et al . Robust secure beamforming design for multi-RIS-aided MISO systems with hardware impairments and channel uncertainties [J ] . IEEE Transactions on Communications , 2025 , 73 ( 3 ): 1517 - 1530 .
王晓云 , 陆璐 , 刘超 , 等 . 面向6G的网络架构建模、评估及优化 [J ] . 通信学报 , 2024 , 45 ( 7 ): 235 - 249 .
WANG X Y , LU L , LIU C , et al . Modeling, evaluation, and optimization for 6G network architecture [J ] . Journal on Communications , 2024 , 45 ( 7 ): 235 - 249 .
徐勇军 , 邱友静 , 张海波 . 智能反射面辅助的环境反向散射通信系统信道估计算法研究 [J ] . 电子与信息学报 , 2025 , 47 ( 1 ): 75 - 83 .
XU Y J , QIU Y J , ZHANG H B . Channel estimation for intelligent reflecting surface assisted ambient backscatter communication systems [J ] . Journal of Electronics & Information Technology , 2025 , 47 ( 1 ): 75 - 83 .
袁一铭 , 徐勇军 , 周继华 . 可重构智能反射面辅助太赫兹通信系统鲁棒波束成形算法 [J ] . 电子与信息学报 , 2024 , 46 ( 3 ): 808 - 816 .
YUAN Y M , XU Y J , ZHOU J H . Robust beamforming algorithm for terahertz communication systems aided by reconfigurable intelligent surfaces [J ] . Journal of Electronics & Information Technology , 2024 , 46 ( 3 ): 808 - 816 .
ZHANG H J , ZHANG Y X , LIU X N , et al . Resource allocation and mobility management for perceptive mobile networks in 6G [J ] . IEEE Wireless Communications , 2024 , 31 ( 4 ): 223 - 229 .
IMT-2030(6G)推进组 . 6G总体愿景与潜在关键技术白皮书 [R ] . 2021 .
IMT-2030(6G) Promotion Group . 6G overall vision and potential key technology white paper [R ] . 2021 .
于刊 , 李东 , 张奇勋 , 等 . 车联网泛在感知、潜在通信、融合计算、内生安全综述: 最新进展与未来方向 [J ] . 通信学报 , 2024 , 45 ( 11 ): 223 - 243 .
YU K , LI D , ZHANG Q X , et al . Survey of ubiquitons sensing, potential communication, integrated computing, and inherent security for Internet of vehicles: latest developments and future directions [J ] . Journal on Communications , 2024 , 45 ( 11 ): 223 - 243 .
石明利 , 李晓辉 , 吕思婷 . 基于多目标公平感知的通感一体化恒模波形设计 [J ] . 通信学报 , 2024 , 45 ( 10 ): 31 - 40 .
SHI M L , LI X H , LYU S T . ISAC constant modulus waveform design based on multi-target fair sensing [J ] . Journal on Communications , 2024 , 45 ( 10 ): 31 - 40 .
程翔 , 张浩天 , 杨宗辉 , 等 . 车联网通信感知一体化研究: 现状与发展趋势 [J ] . 通信学报 , 2022 , 43 ( 8 ): 188 - 202 .
CHENG X , ZHANG H T , YANG Z H , et al . Integrated sensing and communications for Internet of vehicles: current status and development trend [J ] . Journal on Communications , 2022 , 43 ( 8 ): 188 - 202 .
杨杰 , 黄艺璇 , 杜涛 , 等 . 通信感知一体化原型验证的研究现状与发展趋势 [J ] . 通信学报 , 2023 , 44 ( 11 ): 43 - 54 .
YANG J , HUANG Y X , DU T , et al . Prototype verification for integrated sensing and communications: current status and development trends [J ] . Journal on Communications , 2023 , 44 ( 11 ): 43 - 54 .
LIU F , CUI Y H , MASOUROS C , et al . Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 6 ): 1728 - 1767 .
CUI Y H , LIU F , JING X J , et al . Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges [J ] . IEEE Network , 2021 , 35 ( 5 ): 158 - 167 .
徐勇军 , 曹娜 , 陈前斌 . 通信感知一体化波形设计方法综述 [J ] . 重庆邮电大学学报(自然科学版) , 2023 , 35 ( 6 ): 981 - 991 .
XU Y J , CAO N , CHEN Q B . Survey on waveform design methods for integrated sensing and communication [J ] . Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) , 2023 , 35 ( 6 ): 981 - 991 .
余显斌 , 吕治东 , 李涟漪 , 等 . 太赫兹感知通信一体化波形设计与信号处理 [J ] . 通信学报 , 2022 , 43 ( 2 ): 76 - 88 .
YU X B , LYU Z D , LI L Y , et al . Waveform design and signal processing for terahertz integrated sensing and communication [J ] . Journal on Communications , 2022 , 43 ( 2 ): 76 - 88 .
NIU Y Y , WEI Z Q , MA D Y , et al . Interference management in MIMO-ISAC systems: a transceiver design approach [J ] . IEEE Transactions on Cognitive Communications and Networking , 2024 ( 99 ): 1 .
林粤伟 , 张奇勋 , 尉志青 , 等 . 通信感知一体化硬件设计: 现状与展望 [J ] . 电子与信息学报 , 2025 , 47 ( 1 ): 1 - 21 .
LIN Y W , ZHANG Q X , YU Z Q , et al . Status and prospect of hardware design on integrated sensing and communication [J ] . Journal of Electronics & Information Technology , 2025 , 47 ( 1 ): 1 - 21 .
PRASOBH SANKAR R S , CHEPURI S P , ELDAR Y C . Beamforming in integrated sensing and communication systems with reconfigurable intelligent surfaces [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 5 ): 4017 - 4031 .
王晓云 , 张小舟 , 马良 , 等 . 6G通信感知一体化网络的感知算法研究与优化 [J ] . 通信学报 , 2023 , 44 ( 2 ): 219 - 230 .
WANG X Y , ZHANG X Z , MA L , et al . Research and optimization on the sensing algorithm for 6G integrated sensing and communication network [J ] . Journal on Communications , 2023 , 44 ( 2 ): 219 - 230 .
XU D F , YU X H , NG D W K , et al . Robust and secure resource allocation for ISAC systems: a novel optimization framework for variable-length snapshots [J ] . IEEE Transactions on Communications , 2022 , 70 ( 12 ): 8196 - 8214 .
张广驰 , 乐文英 , 庞海舰 , 等 . IRS辅助认知无线携能通信网络的发射功率最小化算法 [J ] . 华南理工大学学报(自然科学版) , 2023 , 51 ( 3 ): 110 - 123 .
ZHANG G C , LE W Y , PANG H J , et al . Transmit power minimization algorithms for IRS-assisted cognitive simultaneous wireless information and power transfer networks [J ] . Journal of South China University of Technology (Natural Science Edition) , 2023 , 51 ( 3 ): 110 - 123 .
HU J M , VALIULAHI I , MASOUROS C . ISAC receiver design: a learning-based two-stage joint data-and-target parameter estimation [J ] . IEEE Wireless Communications Letters , 2024 , 13 ( 8 ): 2105 - 2109 .
ZHANG R H , JIANG C X , WU S , et al . Wi-Fi sensing for joint gesture recognition and human identification from few samples in human-computer interaction [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 7 ): 2193 - 2205 .
XIAO Z Q , ZENG Y . Waveform design and performance analysis for full-duplex integrated sensing and communication [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 6 ): 1823 - 1837 .
LIU R , LI M , LIU Q , et al . Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 6 ): 1918 - 1931 .
MOON S , LIU H P , HWANG I . Joint beamforming for RIS-assisted integrated sensing and secure communication in UAV networks [J ] . Journal of Communications and Networks , 2024 , 26 ( 5 ): 502 - 508 .
CUI Y Y , LI H H , ZHANG D G , et al . Multiagent reinforcement learning-based cooperative multitype task offloading strategy for Internet of vehicles in B5G/6G network [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 14 ): 12248 - 12260 .
LU Y , MAO W H , DU H Y , et al . Semantic-aware vision-assisted integrated sensing and communication: architecture and resource allocation [J ] . IEEE Wireless Communications , 2024 , 31 ( 3 ): 302 - 308 .
LIU Q , LUO R , LIANG H R , et al . Energy-efficient joint computation offloading and resource allocation strategy for ISAC-aided 6G V2X networks [J ] . IEEE Transactions on Green Communications and Networking , 2023 , 7 ( 1 ): 413 - 423 .
LIU X N , ZHANG H J , REN C , et al . Multi-task learning resource allocation in federated integrated sensing and communication networks [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 9 ): 11612 - 11623 .
CHEN Q Y , CAO J N , ZHU S Y . Data-driven monitoring and predictive maintenance for engineering structures: technologies, implementation challenges, and future directions [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 16 ): 14527 - 14551 .
HE H T , JIN S , WEN C K , et al . Model-driven deep learning for physical layer communications [J ] . IEEE Wireless Communications , 2019 , 26 ( 5 ): 77 - 83 .
ZHANG Y W , LI S B , LI D Y , et al . Transformer-based predictive beamforming for integrated sensing and communication in vehicular networks [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 11 ): 20690 - 20705 .
XU X D , ZHU F Z , HAN S J , et al . Swin-loc: transformer-based CSI fingerprinting indoor localization with MIMO ISAC system [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 8 ): 11664 - 11679 .
ZHANG X Q , YUAN W J , LIU C , et al . Predictive beamforming for vehicles with complex behaviors in ISAC systems: a deep learning approach [J ] . IEEE Journal of Selected Topics in Signal Processing , 2024 , 18 ( 5 ): 828 - 841 .
FONTANESI G , GUERRA A , GUIDI F , et al . A deep-NN beamforming approach for dual function radar-communication THz UAV [J ] . IEEE Transactions on Vehicular Technology , 2025 , 74 ( 1 ): 746 - 760 .
ZHANG J X , XU S , ZHANG Z M , et al . A denoising diffusion probabilistic model-based digital twinning of ISAC MIMO channel [J ] . IEEE Internet of Things Journal , 2024 ( 99 ): 1 .
JIANG W J , MA D Y , WEI Z Q , et al . ISAC-NET: model-driven deep learning for integrated passive sensing and communication [J ] . IEEE Transactions on Communications , 2024 , 72 ( 8 ): 4692 - 4707 .
ZHANG J F , LIU M Q , TANG J , et al . Joint design for RIS-aided ISAC via deep unfolding learning [J ] . IEEE Transactions on Cognitive Communications and Networking , 2025 , 11 ( 1 ): 349 - 361 .
蒲旭敏 , 刘雁翔 , 宋米雪 , 等 . 基于模型驱动深度学习的OTFS信道估计 [J ] . 电子与信息学报 , 2024 , 46 ( 2 ): 680 - 687 .
PU X M , LIU Y X , SONG M X , et al . Orthogonal time frequency space channel estimation based on model-driven deep learning [J ] . Journal of Electronics & Information Technology , 2024 , 46 ( 2 ): 680 - 687 .
张翔宇 . 数据与模型协同驱动的智能无线通信技术研究 [D ] . 南京 : 东南大学 , 2023 .
ZHANG X Y . Research on intelligent wireless communication technology driven by data and model [D ] . Nanjing : Southeast University , 2023 .
MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks: a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 2595 - 2621 .
ABDEL KHALEK N , TASHMAN D H , HAMOUDA W . Advances in machine learning-driven cognitive radio for wireless networks: a survey [J ] . IEEE Communications Surveys & Tutorials , 2024 , 26 ( 2 ): 1201 - 1237 .
XU X D , YAN K W , HAN S J , et al . Learning-based edge-device collaborative DNN inference in IoVT networks [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 5 ): 7989 - 8004 .
DJIGAL H , XU J , LIU L F , et al . Machine and deep learning for resource allocation in multi-access edge computing: a survey [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 4 ): 2449 - 2494 .
REN X Y , MOSAVAT-JAHROMI H , CAI L , et al . Spatio-temporal spectrum load prediction using convolutional neural network and ResNet [J ] . IEEE Transactions on Cognitive Communications and Networking , 2022 , 8 ( 2 ): 502 - 513 .
YU J Y , HOWARD W W , XU Y , et al . Model order estimation in the presence of multipath interference using residual convolutional neural networks [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 7 ): 7349 - 7361 .
CHEN W X , LYU F , WU F , et al . FLAG: flexible, accurate, and long-time user load prediction in large-scale Wi-Fi system using deep RNN [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 22 ): 16510 - 16521 .
RODRÍGUEZ E , OTERO B , GUTIÉRREZ N , et al . A survey of deep learning techniques for cybersecurity in mobile networks [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 3 ): 1920 - 1955 .
MOHAMMADI M , AL-FUQAHA A , SOROUR S , et al . Deep learning for IoT big data and streaming analytics: a survey [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 2923 - 2960 .
ZHANG S Y , ZHANG S Y , MAO Y J , et al . Transformer-based channel prediction for rate-splitting multiple access-enabled vehicle-to-everything communication [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 10 ): 12717 - 12730 .
FAN X W , ZHANG Y K , LU Y , et al . PARFormer: transformer-based multi-task network for pedestrian attribute recognition [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2024 , 34 ( 1 ): 411 - 423 .
JIANG H , CUI M Y , NG D W K , et al . Accurate channel prediction based on transformer: making mobility negligible [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 9 ): 2717 - 2732 .
ABDI N , ALBASEER A , ABDALLAH M . The role of deep learning in advancing proactive cybersecurity measures for smart grid networks: a survey [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 9 ): 16398 - 16421 .
ALI AL-GARADI M , MOHAMED A , AL-ALI A K , et al . A survey of machine and deep learning methods for Internet of things (IoT) security [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 3 ): 1646 - 1685 .
PANG G Y , LIU W C , LI Y H , et al . DRL-based resource allocation in remote state estimation [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 7 ): 4434 - 4448 .
WANG X M , ZHANG Y H , SHEN R J , et al . DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 8 ): 7279 - 7294 .
DU J H , HE M M , HE J , et al . A tensor-based signal processing for ISAC using C-DRCNN in RIS-assisted mmWave MIMO-OFDM systems [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 18 ): 29470 - 29485 .
ZHANG X Q , WEN H F , YAN Z Y , et al . A novel joint channel estimation and symbol detection receiver for orthogonal time frequency space in vehicular networks [J ] . Entropy , 2023 , 25 ( 9 ): 1358 .
MATSUMINE T , OCHIAI H . Recent advances in deep learning for channel coding: a survey [J ] . IEEE Open Journal of the Communications Society , 2024 , 5 : 6443 - 6481 .
JING Z X , MU J S , LI X Y , et al . Efficient fusion and reconstruction for communication and sensing signals in green IoT networks [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 11 ): 9319 - 9328 .
WANG C , LI G , ZHANG H B , et al . Fluid antenna system liberating multiuser MIMO for ISAC via deep reinforcement learning [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 9 ): 10879 - 10894 .
LI R Z , BAO C Y , CHEN L , et al . Deep learning enabled precoding in secure integrated sensing and communication systems [J ] . IEEE Communications Letters , 2024 , 28 ( 12 ): 2769 - 2773 .
SAGDUYU Y E , ERPEK T , YENER A , et al . Will 6G be semantic communications? opportunities and challenges from task oriented and secure communications to integrated sensing [J ] . IEEE Network , 2024 , 38 ( 6 ): 72 - 80 .
LIU X N , ZHANG H J , LONG K P , et al . Distributed unsupervised learning for interference management in integrated sensing and communication systems [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 12 ): 9301 - 9312 .
CHEN Y H , YANG H L , OU X Y , et al . Anti-jamming resource allocation for integrated sensing and communications based on game-guided reinforcement learning [J ] . IEEE Wireless Communications Letters , 2025 , 14 ( 1 ): 223 - 227 .
PALA S , SINGH K , LI C P , et al . Empowering ISAC systems with federated learning: a focus on satellite and RIS-enhanced terrestrial integrated networks [J ] . IEEE Transactions on Wireless Communications , 2025 , 24 ( 1 ): 810 - 824 .
HU B T , ZHANG W Z , GAO Y , et al . Multiagent deep deterministic policy gradient-based computation offloading and resource allocation for ISAC-aided 6G V2X networks [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 20 ): 33890 - 33902 .
GONG Y , WEI Y F , FENG Z Y , et al . Resource allocation for integrated sensing and communication in digital twin enabled Internet of vehicles [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 4 ): 4510 - 4524 .
KURMA S , SINGH K , MUMTAZ S , et al . Resource optimization in active-STAR-RIS-aided THz ISAC systems with DDA modulation: a machine-learning approach [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 10 ): 15291 - 15307 .
XIE Z Y , WANG Z Y , ZHANG Z K , et al . Distributed UAV swarm for device-free integrated sensing and communication relying on multi-agent reinforcement learning [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 12 ): 19925 - 19930 .
WANG Q Y , CHAI R , SUN R J , et al . ISAC-enabled multi-UAV cooperative perception and trajectory optimization [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 24 ): 40982 - 40995 .
ZHANG F , HAN G J , LIU L , et al . Deep reinforcement learning based cooperative partial task offloading and resource allocation for IIoT applications [J ] . IEEE Transactions on Network Science and Engineering , 2023 , 10 ( 5 ): 2991 - 3006 .
LIANG Y H , TANG H J , WU H M , et al . Lyapunov-guided offloading optimization based on soft actor-critic for ISAC-aided Internet of vehicles [J ] . IEEE Transactions on Mobile Computing , 2024 , 23 ( 12 ): 14708 - 14721 .
LUO F , KHAN S , JIANG B , et al . Vision transformers for human activity recognition using Wi-Fi channel state information [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 17 ): 28111 - 28122 .
ZHANG Y Y , WANG G P , LIU H , et al . Wi-Fi-based indoor human activity sensing: a selective sensing strategy and a multilevel feature fusion approach [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 18 ): 29335 - 29347 .
KANG L Y , LI Z , ZHAO X H , et al . ST-PCT: spatial-temporal point cloud transformer for sensing activity based on mmWave [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 6 ): 10979 - 10991 .
CHENG X C , YUAN X J , JIANG W J , et al . Deep active learning for mmWave array-based multi-source AoA tracking [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 9 ): 12368 - 12381 .
NAOUMI S , BAZZI A , BOMFIN R , et al . Complex neural network based joint AoA and AoD estimation for bistatic ISAC [J ] . IEEE Journal of Selected Topics in Signal Processing , 2024 , 18 ( 5 ): 842 - 856 .
WU Y Z , LEMIC F , HAN C , et al . Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems [J ] . IEEE Transactions on Communications , 2023 , 71 ( 1 ): 595 - 610 .
CHEN P , CHEN Z M , LIU L , et al . SDOA-net: an efficient deep-learning-based DOA estimation network for imperfect array [J ] . IEEE Transactions on Instrumentation and Measurement , 2024 , 73 : 8503512 .
PAUL A , SINGH K , KAUSHIK A , et al . Quantum-enhanced DRL optimization for DoA estimation and task offloading in ISAC systems [J ] . IEEE Journal on Selected Areas in Communications , 2025 , 43 ( 1 ): 364 - 381 .
LIU C , LIU X M , LI S Y , et al . Deep CLSTM for predictive beamforming in integrated sensing and communication-enabled vehicular networks [J ] . Journal of Communications and Information Networks , 2022 , 7 ( 3 ): 269 - 277 .
LIU C , YUAN W J , LI S Y , et al . Learning-based predictive beamforming for integrated sensing and communication in vehicular networks [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 8 ): 2317 - 2334 .
WANG Z H , WONG V W S , SCHOBER R . Integrated sensing and communications for end-to-end predictive beamforming design in vehicle-to-infrastructure networks [J ] . IEEE Journal of Selected Topics in Signal Processing , 2024 , 18 ( 5 ): 933 - 949 .
EGHBALI Y , FARAMARZI S , TASKOU S K , et al . Beamforming for STAR-RIS-aided integrated sensing and communication using meta DRL [J ] . IEEE Wireless Communications Letters , 2024 , 13 ( 4 ): 919 - 923 .
LIU Q , ZHU Y Q , LI M , et al . DRL-based secrecy rate optimization for RIS-assisted secure ISAC systems [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 12 ): 16871 - 16875 .
WU J G , WANG Z G , LIU Y F , et al . Efficient global algorithms for transmit beamforming design in ISAC systems [J ] . IEEE Transactions on Signal Processing , 2024 , 72 : 4493 - 4508 .
TARIQ S , ARFETO B E , KHALID U , et al . Deep quantum-transformer networks for multimodal beam prediction in ISAC systems [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 18 ): 29387 - 29401 .
ZOU J Q , WANG C W , LIU Y Y , et al . Vision-assisted 3-D predictive beamforming for green UAV-to-vehicle communications [J ] . IEEE Transactions on Green Communications and Networking , 2023 , 7 ( 1 ): 434 - 443 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构