
浏览全部资源
扫码关注微信
1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
2.南京邮电大学通信与信息工程学院,江苏 南京 210003
[ "于舒娟(1967- ),女,江苏南京人,南京邮电大学教授,主要研究方向为自适应信号处理、深度学习和智能大数据处理。" ]
[ "赵阳(2000- ),男,江苏淮安人,南京邮电大学硕士生,主要研究方向为深度学习与信号处理。" ]
[ "魏玉尧(2001- ),男,湖南邵阳人,南京邮电大学硕士生,主要研究方向为深度学习与信号处理。" ]
[ "张昀(1975- ),女,江苏南京人,博士,南京邮电大学副教授,主要研究方向为智 能化算法与通信信号处理。" ]
[ "高贵(2000- ),男,安徽阜阳人,南京邮电大学硕士生,主要研究方向为深度学习与信号处理。" ]
[ "赵生妹(1968- ),女,江苏丹徒人,博士,南京邮电大学教授,主要研究方向为量子通信与信息处理、无线通信与信号处理。" ]
收稿日期:2024-09-12,
修回日期:2025-01-10,
纸质出版日期:2025-01-25
移动端阅览
于舒娟,赵阳,魏玉尧等.超大规模太赫兹系统深度学习信道估计算法[J].通信学报,2025,46(01):144-156.
YU Shujuan,ZHAO Yang,WEI Yuyao,et al.Deep learning channel estimation algorithm for ultra-massive terahertz systems[J].Journal on Communications,2025,46(01):144-156.
于舒娟,赵阳,魏玉尧等.超大规模太赫兹系统深度学习信道估计算法[J].通信学报,2025,46(01):144-156. DOI: 10.11959/j.issn.1000-436x.2025018.
YU Shujuan,ZHAO Yang,WEI Yuyao,et al.Deep learning channel estimation algorithm for ultra-massive terahertz systems[J].Journal on Communications,2025,46(01):144-156. DOI: 10.11959/j.issn.1000-436x.2025018.
为了进一步提升THz超大规模MIMO系统混合场信道估计性能,基于不动点网络(FPN)引入了一种基于跨通道信息交互的Transformer注意力机制模块与快速傅里叶变换卷积网络(FCN),提出了一种基于图像恢复网络的信道估计算法FPN-OTFN,将信道估计问题建模为图像恢复问题。在导频处采用最小二乘算法获得初始信道信息,并将其作为所提FPN-OTFN算法的输入,通过训练学习低精度信道图像和高精度图像间的映射关系,恢复出真实的信道状态信息。仿真实验结果表明,所提算法不仅继承了FPN框架的高效性、自适应性,同时对THz信道拥有较高的估计精度和良好的鲁棒性。
In order to further improve the hybrid-field channel estimation performance in terahertz ultra-massive multiple-input multiple-output systems
an efficient cross channel Transformer module for image restoration and a fast Fourier transform convolutional network were introduced based on the fixed point network
and a scalable and efficient deep learning model FPN-OTFN was proposed
which models the channel estimation problem as an image restoration problem. Firstly
the least squares algorithm was used to obtain the channel information at the pilot location
and then the channel information was input into the proposed FPN-OTFN algorithm. By training and learning the mapping relationship between low precision channel images and high-precision images
the true channel state information was restored. The simulation results show that the proposed scheme not only inherits the high efficiency and adaptivity of the FPN framework
but also possesses high estimation accuracy and good robustness for THz channels.
WAN Z W , GAO Z , GAO F F , et al . Terahertz massive MIMO with holographic reconfigurable intelligent surfaces [J ] . IEEE Transactions on Communications , 2021 , 69 ( 7 ): 4732 - 4750 .
ELBIR A M , MISHRA K V , CHATZINOTAS S . Terahertz-band joint ultra-massive MIMO radar-communications: model-based and model-free hybrid beamforming [J ] . IEEE Journal of Selected Topics in Signal Processing , 2021 , 15 ( 6 ): 1468 - 1483 .
FAISAL A , SARIEDDEEN H , DAHROUJ H , et al . Ultramassive MIMO systems at terahertz bands: prospects and challenges [J ] . IEEE Vehicular Technology Magazine , 2020 , 15 ( 4 ): 33 - 42 .
LIN C , LI G Y L . Terahertz communications: an array-of-subarrays solution [J ] . IEEE Communications Magazine , 2016 , 54 ( 12 ): 124 - 131 .
DOVELOS K , MATTHAIOU M , NGO H Q , et al . Channel estimation and hybrid combining for wideband terahertz massive MIMO systems [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 6 ): 1604 - 1620 .
ELBIR A M , SHI W , PAPAZAFEIROPOULOS A K , et al . Near-field terahertz communications: model-based and model-free channel estimation [J ] . IEEE Access , 2023 , 11 : 36409 - 36420 .
CUI M Y , DAI L L . Channel estimation for extremely large-scale MIMO: far-field or near-field? [J ] . IEEE Transactions on Communications , 2022 , 70 ( 4 ): 2663 - 2677 .
黄源 , 何怡刚 , 吴裕庭 , 等 . 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法 [J ] . 通信学报 , 2021 , 42 ( 8 ): 61 - 69 .
HUANG Y , HE Y G , WU Y T , et al . Deep learning for compressed sensing based sparse channel estimation in FDD massive MIMO systems [J ] . Journal on Communications , 2021 , 42 ( 8 ): 61 - 69 .
CHEN Y H , HAN C . Deep CNN-based spherical-wave channel estimation for terahertz ultra-massive MIMO systems [C ] // Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference . Piscataway : IEEE Press , 2020 : 1 - 6 .
RANJITH S , JESU J P , CHANDRA S A . A multi-fusion integrated end-to-end deep kernel CNN based channel estimation for hybrid range UM-MIMO 6G communication systems [J ] . Applied Acoustics , 2023 , 210 : 109427 .
GAO J B , CHENG X M , LI G Y . Deep unfolding-based channel estimation for wideband TeraHertz near-field massive MIMO systems [J ] . arXiv Preprint , arXiv: 2308.13381 , 2023 .
YU W T , SHEN Y F , HE H T , et al . An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation [J ] . arXiv Preprint , arXiv: 2211.15939 , 2022 .
SOLTANI M , POURAHMADI V , MIRZAEI A , et al . Deep learning-based channel estimation [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 652 - 655 .
RU X , WEI L , XU Y Y . Model-driven channel estimation for OFDM systems based on image super-resolution network [C ] // Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP) . Piscataway : IEEE Press , 2020 : 804 - 808 .
WANG Y Z , LU H C , SUN H . Channel estimation in IRS-enhanced mmWave system with super-resolution network [J ] . IEEE Communications Letters , 2021 , 25 ( 8 ): 2599 - 2603 .
ZAMIR S W , ARORA A , KHAN S , et al . Restormer: efficient transformer for high-resolution image restoration [C ] // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2022 : 5718 - 5729 .
SARIEDDEEN H , ALOUINI M S , AL-NAFFOURI T Y . An overview of signal processing techniques for terahertz communications [J ] . Proceedings of the IEEE , 2021 , 109 ( 10 ): 1628 - 1665 .
BOULOGEORGOS A A , PAPASOTIRIOU E N , ALEXIOU A . Analytical performance assessment of THz wireless systems [J ] . IEEE Access , 2019 , 7 : 11436 - 11453 .
PIESIEWICZ R , JANSEN C , MITTLEMAN D , et al . Scattering analysis for the modeling of THz communication systems [J ] . IEEE Transactions on Antennas and Propagation , 2007 , 55 ( 11 ): 3002 - 3009 .
TSE D , VISWANATH P . Fundamentals of wireless communication [M ] . Cambridge : Cambridge University Press , 2005 .
MA J J , PING L . Orthogonal amp [J ] . IEEE Access , 2017 , 5 : 2020 - 2033 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . Massachusetts : MIT Press , 2017 : 6000 - 6010 .
ZHANG D F , HUANG F Y , LIU S Z , et al . SwinFIR: revisiting the SwinIR with fast Fourier convolution and improved training for image super-resolution [J ] . arxiv Preprint , arxiv: 2208.11247 , 2022 .
CHEN L Y , CHU X J , ZHANG X Y , et al . Simple baselines for image restoration [C ] // Proceedings of European Conference on Computer Vision . Cham : Springer Nature Switzerland , 2022 : 17 - 33 .
ZHANG J , GHANEM B . ISTA-net: interpretable optimization-inspired deep network for image compressive sensing [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 1828 - 1837 .
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621