浏览全部资源
扫码关注微信
西北农林科技大学网络与教育技术中心,陕西 咸阳 712100
[ "胡国强(1981-),男,陕西周至人,西北农林科技大学高级工程师,主要研究方向为信息网络技术应用与教育信息化。" ]
收稿日期:2024-08-21,
纸质出版日期:2024-11-30
移动端阅览
胡国强.高校电子文献资源智能推荐系统的架构设计与核心策略研究[J].通信学报,2024,45(Z2):160-167.
HU Guoqiang.Research on architecture design and core strategy of intelligent recommendation system for electronic literature resources in colleges and universities[J].Journal on Communications,2024,45(Z2):160-167.
胡国强.高校电子文献资源智能推荐系统的架构设计与核心策略研究[J].通信学报,2024,45(Z2):160-167. DOI: 10.11959/j.issn.1000-436x.2024240.
HU Guoqiang.Research on architecture design and core strategy of intelligent recommendation system for electronic literature resources in colleges and universities[J].Journal on Communications,2024,45(Z2):160-167. DOI: 10.11959/j.issn.1000-436x.2024240.
为了方便师生在海量电子文献中快速定位所需文献资源,提高电子文献资源使用效率,实现文献推荐服务个性化、精准化,设计了高校电子文献资源智能推荐系统。首先,利用文献法分析了高校电子文献智能推荐系统实现存在的问题;然后,基于这些问题设计了一种包含数据采集层、数据挖掘层、推荐大脑层、应用服务层、信息标准化体系及安全与运行维护体系的高校电子文献资源智能推荐系统;最后,介绍了该系统的核心策略与算法。在我校实践应用表明,该系统能为用户推荐感兴趣的电子文献资源,能为其他高校个性化电子文献智能推荐系统的落地提供参考。
In order to facilitate teachers and students to quickly locate the required literature resources in the massive electronic literature
improve the efficiency of electronic literature resource utilization
and achieve personalized and accurate literature recommendation services
a university electronic literature resource intelligent recommendation system was designed. Firstly the problems existing in the implementation of the intelligent recommendation system for university electronic literature were analyzed using the literature method. On these problems
a university electronic literature resource intelligent recommendation system was designed
which includes a data collection layer
a data mining layer
a recommendation brain layer
an application service layer
an information standardization system
and a security and operation maintenance system. Finally
the core strategies and algorithms of the system were introduced. Practical application in our university has shown that the system can recommend electronic literature resources of interest to users and provide reference for the implementation of personalized electronic literature intelligent recommendation systems in other universities.
黄英辉 , 王伟军 , 刘辉 , 等 . 个性化信息推荐中的过度特化问题研究进展 [J ] . 情报科学 , 2022 , 40 ( 8 ): 185 - 192 .
HUANG Y H , WANG W J , LIU H , et al . Research progress of the over-specialization problems in personalized information recommendation [J ] . Information Science , 2022 , 40 ( 8 ): 185 - 192 .
邹鼎杰 , 包冬梅 . 基于社会网络分析的图书共借网络研究: 以复旦大学图书馆为例 [J ] . 图书馆杂志 , 2020 , 39 ( 10 ): 89 - 95 .
ZOU D J , BAO D M . Book co-borrowing network based on social network analysis: a case study of Fudan university library [J ] . Library Journal , 2020 , 39 ( 10 ): 89 - 95 .
肖仁锋 . 基于协同过滤的图书馆个性化推荐算法的研究 [D ] . 济南 : 山东师范大学 , 2017 .
XIAO R F . Research on personalized recommendation method of library based on collaborative filtering [D ] . Jinan : Shandong Normal University , 2017 .
OSADCHIY T , POLIAKOV I , OLIVIER P , et al . Recommender system based on pairwise association rules [J ] . Expert Systems with Applications , 2019 , 115 : 535 - 542 .
薛福亮 , 马莉 . 利用动态产品分类树改进的关联规则推荐算法 [J ] . 计算机工程与应用 , 2016 , 52 ( 4 ): 135 - 141 .
XUE F L , MA L . Improved association rule recommendation method based on dynamic product taxonomy [J ] . Computer Engineering and Applications , 2016 , 52 ( 4 ): 135 - 141 .
郭显娥 , 王俊红 . 多维概念格与关联规则发现 [J ] . 计算机应用 , 2010 , 30 ( 4 ): 1072 - 1075 .
GUO X E , WANG J H . Multi-dimensional concept lattice and association rules discovery [J ] . Journal of Computer Applications , 2010 , 30 ( 4 ): 1072 - 1075 .
刘华玲 , 马俊 , 张国祥 . 基于深度学习的内容推荐算法研究综述 [J ] . 计算机工程 , 2021 , 47 ( 7 ): 1 - 12 .
LIU H L , MA J , ZHANG G X . Review of studies on deep learning-based content recommendation algorithms [J ] . Computer Engineering , 2021 , 47 ( 7 ): 1 - 12 .
于蒙 , 何文涛 , 周绪川 , 等 . 推荐系统综述 [J ] . 计算机应用 , 2022 , 42 ( 6 ): 1898 - 1913 .
YU M , HE W T , ZHOU X C , et al . Review of recommendation system [J ] . Journal of Computer Applications , 2022 , 42 ( 6 ): 1898 - 1913 .
尹宏伟 , 杭雨晴 , 胡文军 . 融合异常检测与区域分割的高效K-means聚类算法 [J ] . 郑州大学学报(工学版) , 2024 , 45 ( 3 ): 80 - 88 .
YIN H W , HANG Y Q , HU W J . Efficient K-means with region segment and outlier detection [J ] . Journal of Zhengzhou University (Engineering Science) , 2024 , 45 ( 3 ): 80 - 88 .
邬满 , 张万桢 , 孙苗 , 等 . 基于DBIRCH算法的Argo剖面数据聚类 [J ] . 吉林大学学报(信息科学版) , 2020 , 38 ( 5 ): 568 - 577 .
WU M , ZHANG W Z , SUN M , et al . Argo profile data clustering based on DBIRCH algorithm [J ] . Journal of Jilin University (Information Science Edition) , 2020 , 38 ( 5 ): 568 - 577 .
李志聪 , 孙旭阳 . 基于离群点检测和自适应参数的三支DBSCAN算法 [J ] . 计算机应用研究 , 1 - 7 .
LI Z C , SUN X Y . Three-way DBSCAN algorithm based on outlier detection and adaptive parameters [J ] . Computer application research , 1 - 7 .
曲天晟 . 融合时间上下文信息的个性化音乐混合推荐算法研究 [D ] . 锦州 : 渤海大学 , 2021 .
QU T S . Research on personalized music hybrid recommendation algorithm combining time context information [D ] . Jinzhou : Bohai University , 2021 .
于旭 , 何亚东 , 杜军威 , 等 . 一种结合显式特征和隐式特征的开发者混合推荐算法 [J ] . 软件学报 , 2022 , 33 ( 5 ): 1635 - 1651 .
YU X , HE Y D , DU J W , et al . Developer hybrid recommendation algorithm based on combination of explicit features and implicit features [J ] . Journal of Software , 2022 , 33 ( 5 ): 1635 - 1651 .
成胤钟 . 基于畅销书及意见领袖的图书推荐系统 [J ] . 计算机应用与软件 , 2024 , 41 ( 1 ): 64 - 70, 104 .
CHENG Y Z . Book recommendation system based on opinion leaders and popular books [J ] . Computer Applications and Software , 2024 , 41 ( 1 ): 64 - 70, 104 .
陈显龙 . 意见挖掘结合图分类器的图书个性化推荐系统 [J ] . 湘潭大学自然科学学报 , 2017 , 39 ( 3 ): 107 - 110 .
CHEN X L . A book recommendation system based on fusion of opinion mining and figure classifier [J ] . Natural Science Journal of Xiangtan University , 2017 , 39 ( 3 ): 107 - 110 .
孙彦超 . 基于聚类分析算法的图书推荐系统的研究 [J ] . 图书馆理论与实践 , 2015 ( 5 ): 76 - 79 .
SUN Y C . Research on book recommendation system based on clustering analysis algorithm [J ] . Library Theory and Practice , 2015 ( 5 ): 76 - 79 .
刘韵毅 , 梁樑 . 基于用户偏好的文献推荐系统 [J ] . 情报理论与实践 , 2007 , 30 ( 1 ): 61 - 63, 25 .
LIU Y Y , LIANG L . The literature recommendation system based on users’ preference [J ] . Information Studies (Theory & Application) , 2007 , 30 ( 1 ): 61 - 63, 25 .
陈华 , 陆黎明 , 刘玉文 . 基于Web数据挖掘的文献个性化推荐系统的设计 [J ] . 山东大学学报(理学版) , 2007 , 42 ( 11 ): 69 - 72 .
CHEN H , LU L M , LIU Y W . Design of a literature personalized recommendation system based on web data mining [J ] . Journal of Shandong University (Natural Science) , 2007 , 42 ( 11 ): 69 - 72 .
刁羽 , 薛红 . 基于电子资源行为数据的TF-IDF文献推荐算法研究: 以电子资源校外访问系统为例 [J ] . 图书馆杂志 , 2022 , 41 ( 12 ): 45 - 54 .
DIAO Y , XUE H . Research on the TF-IDF literature recommendation based on behavior data of electronic resource: taking off-campus access system of electronic resource as an example [J ] . Library Journal , 2022 , 41 ( 12 ): 45 - 54 .
秦楠 , 郑競力 , 吴驰 , 等 . 高校资讯智能推荐系统的架构设计与关键策略研究 [J ] . 现代教育技术 , 2023 , 33 ( 12 ): 100 - 110 .
QIN N , ZHENG J L , WU C , et al . Research on the architecture construction and key strategies of intelligent recommendation system for university information [J ] . Modern Educational Technology , 2023 , 33 ( 12 ): 100 - 110 .
王春成 . 基于混合推荐算法的智能分诊系统研究与设计 [D ] . 成都 : 成都理工大学 , 2021 .
WANG C C . Research and design of intelligent triage system based on hybrid recommendation algorithm [D ] . Chengdu : Chengdu University of Technology , 2021 .
胡国强 , 杨彦荣 . 智慧教育背景下高校智慧实验室的构建与研究 [J ] . 实验技术与管理 , 2021 , 38 ( 3 ): 283 - 287 .
HU G Q , YANG Y R . Construction and research of university intelligent laboratory under context of intelligent education [J ] . Experimental Technology and Management , 2021 , 38 ( 3 ): 283 - 287 .
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构