浏览全部资源
扫码关注微信
1.山东大学信息化工作办公室,山东 济南 250100
2.山东大学(威海)信息化工作办公室,山东 威海 265209
[ "李振(1995- ),男,山东泰安人,山东大学工程师,主要研究方向为教育信息化、大数据分析。" ]
[ "李智超(1989- ),男,山东滨州人,山东大学工程师,主要研究方向为高校信息化、软件工程、人工智能。" ]
[ "陈琳(1983- ),男,山东济南人,博士,山东大学高级工程师,主要研究方向为教育信息化、人工智能。" ]
收稿日期:2024-10-22,
纸质出版日期:2024-11-30
移动端阅览
李振,李智超,陈琳.基于SVM-RFE与Transformer-TBAM的高校邮件分析研究[J].通信学报,2024,45(Z2):97-101.
LI Zhen,LI Zhichao,CHEN Lin.Research on university email analysis based on SVM-RFE and Transformer-TBAM[J].Journal on Communications,2024,45(Z2):97-101.
李振,李智超,陈琳.基于SVM-RFE与Transformer-TBAM的高校邮件分析研究[J].通信学报,2024,45(Z2):97-101. DOI: 10.11959/j.issn.1000-436x.2024229.
LI Zhen,LI Zhichao,CHEN Lin.Research on university email analysis based on SVM-RFE and Transformer-TBAM[J].Journal on Communications,2024,45(Z2):97-101. DOI: 10.11959/j.issn.1000-436x.2024229.
通过挖掘高校电子邮件文本数据并进行分析,可以帮助教职工更好地了解学生的意见和建议,提高管理效率。目前,深度学习方法是文本情感分析的主要方法,然而现有的方法没有充分利用中文文本中的特征。为解决此问题,提出基于SVM-RFE与Transformer-TBAM架构模型处理高校邮件,该架构重构了双通道注意力模型及特征筛选机制以深度提取有效特征信息。实验表明,该算法在高校邮件数据集分类效果达到了94.67%的准确率,比传统算法高出1.2%。
By mining and analyzing email text data from universities
it can help faculty members better understand students’opinions and suggestions
and improve management efficiency. At present
deep learning methods are the main approach for text sentiment analysis
but existing methods have not fully utilized the features in Chinese text. To address this issue
a framework based on SVM-RFE and Transformer models was proposed for processing university emails. This architecture reconstructs a dual branch attention model and feature filtering mechanism to deeply extract effective feature information. The experiment shows that the algorithm achieves an accuracy of 94.67% in the classification of university email datasets
which is 1.2% higher than traditional algorithms.
孟祥福 , 石皓源 . 基于Transformer模型的时序数据预测方法综述 [J/OL ] . 计算机科学与探索 , ( 2024-07-30 )[ 2024-10-22 ] .
闫芳序 , 王剑辉 . 基于SVM和Word2Vec的微博评论情感识别模型 [J ] . 现代计算机 , 2024 , 30 ( 10 ): 60 - 64 .
YAN F X , WANG J H . Sentiment recognition model of weibo comments based on SVM and Word2Vec [J ] . Modern Computer , 2024 , 30 ( 10 ): 60 - 64 .
PENNINGTON J , SOCHER R , MANNING C . Glove: global vectors for word representation [C ] // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Stroudsburg : ACL Press , 2014 : 1532 - 1543 .
LECUN Y , BOTTOU L , BENGIO Y , et al . Gradient-based learning applied to document recognition [J ] . Proceedings of the IEEE , 1998 , 86 ( 11 ): 2278 - 2324 .
ZAREMBA W , SUTSKEVER I , VINYALS O . Recurrent Neural Network Regularization [J ] . arXiv Preprint , arXiv: 1409.2329 , 2014 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 : 1735 - 1780 .
UMER M , IMTIAZ Z , AHMAD M , et al . Impact of convolutional neural network and FastText embedding on text classification [J ] . Multimedia Tools and Applications , 2023 , 82 ( 4 ): 5569 - 5585 .
BETUL POLAT S , CANKURT S . Fake news classification using BLSTM with glove embedding [C ] // Proceedings of the 2023 17th International Conference on Electronics Computer and Computation (ICECCO) . Piscataway : IEEE Press , 2023 : 1 - 5 .
LI X L , ZHANG Y Y , JIN J , et al . A model of integrating convolution and BiGRU dual-channel mechanism for Chinese medical text classifications [J ] . PLoS One , 2023 , 18 ( 3 ): 1 - 20 .
YOON K . Convolutional neural networks for sentence classification [C ] // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Stroudsburg : ACL Press , 1746 - 1751 .
LAI S W , XU L H , LIU K , et al . Recurrent convolutional neural networks for text classification [C ] // Proceedings of the AAAI Conference on Artificial Intelligence , 2015 , 29 ( 1 ): 2267 - 2273 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构