浏览全部资源
扫码关注微信
1.重庆邮电大学通信与信息工程学院,重庆 400065
2.先进网络与智能互联技术重庆市高校重点实验,重庆 400065
3.泛在感知与互联重庆市重点实验室,重庆 400065
[ "王汝言(1969- ),男,湖北浠水人,博士,重庆邮电大学教授、博士生导师,主要研究方向为泛在网络、多媒体信息处理等。" ]
[ "周玉蝶(2000- ),女,四川宜宾人,重庆邮电大学硕士生,主要研究方向为自动驾驶、车联网等。" ]
[ "吴大鹏(1979- ),男,黑龙江大庆人,博士,重庆邮电大学教授、博士生导师,主要研究方向为泛在网络、人工智能等。" ]
[ "段昂(1991- ),男,重庆人,重庆邮电大学博士生,主要研究方向为车联网、自动驾驶、边缘计算等。" ]
[ "崔亚平(1986- ),男,河南新乡人,博士,重庆邮电大学副教授,主要研究方向为车联网、目标检测和行为识别等。" ]
[ "何鹏(1990- ),男,重庆人,博士,重庆邮电大学讲师,主要研究方向为计算机视觉、数据挖掘和分析等。" ]
收稿日期:2024-07-10,
修回日期:2024-11-05,
纸质出版日期:2024-12-25
移动端阅览
王汝言,周玉蝶,吴大鹏等.群组感知的行人轨迹预测方法研究[J].通信学报,2024,45(12):44-56.
WANG Ruyan,ZHOU Yudie,WU Dapeng,et al.Pedestrian trajectory prediction method based on group perception[J].Journal on Communications,2024,45(12):44-56.
王汝言,周玉蝶,吴大鹏等.群组感知的行人轨迹预测方法研究[J].通信学报,2024,45(12):44-56. DOI: 10.11959/j.issn.1000-436x.2024224.
WANG Ruyan,ZHOU Yudie,WU Dapeng,et al.Pedestrian trajectory prediction method based on group perception[J].Journal on Communications,2024,45(12):44-56. DOI: 10.11959/j.issn.1000-436x.2024224.
自动驾驶场景下,大多数方法没有对行人群体进行建模,这样会对道路交通的安全造成影响。因此,提出了一种针对群组感知的行人轨迹预测网络(GPCNet)。具体来说,在组内,从个体层面学习行人之间的交互,考虑不同行人的偏好问题。在组间,从群体层面学习行人组间的交互,使用社会力模型考虑行人轨迹的碰撞问题。仿真结果表明,与常用的轨迹预测方法相比,GPCNet在ETH和UCY数据集上的性能提高了约75.4%。
Most methods do not model the pedestrian groups in autonomous driving
which will have an impact on road traffic safety. Therefore
a group perception pedestrian trajectory prediction network called GPCNet was proposed. Specifically
in intra-group
the interaction between pedestrian was learned at the individual level and the preference issue of different pedestrian was considered. In inter-group
the interaction between pedestrian groups was learned at the group level and the collision issue of pedestrian trajectory was considered using the social force model. Simulation results demonstrate that GPCNet improves the performance on the ETH and UCY datasets by 75.4% compared to the commonly used trajectory prediction methods.
RUDENKO A , PALMIERI L , HERMAN M , et al . Human motion trajectory prediction: a survey [J ] . The International Journal of Robotics Research , 2020 , 39 ( 8 ): 895 - 935 .
CHEN X B , ZHANG H J , ZHAO F , et al . Vehicle trajectory prediction based on intention-aware non-autoregressive transformer with multi-attention learning for Internet of vehicles [J ] . IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 2513912 .
WANG A , MAVROGIANNIS C , STEINFELD A . Group-based motion prediction for navigation in crowded environments [C ] // Proceedings of the 5th Conference on Robot Learning . New York : PMLR , 2022 : 871 - 882 .
RUDENKO A , PALMIERI L , LILIENTHAL A J , et al . Human motion prediction under social grouping constraints [C ] // Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Piscataway : IEEE Press , 2018 : 3358 - 3364 .
HELBING D , MOLNÁR P . Social force model for pedestrian dynamics [J ] . Physical Review E , 1995 , 51 ( 5 ): 4282 - 4286 .
LUBER M , STORK J A , TIPALDI G D , et al . People tracking with human motion predictions from social forces [C ] // Proceedings of the 2010 IEEE International Conference on Robotics and Automation . Piscataway : IEEE Press , 2010 : 464 - 469 .
BROUWER N , KLOEDEN H , STILLER C . Comparison and evaluation of pedestrian motion models for vehicle safety systems [C ] // Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) . Piscataway : IEEE Press , 2016 : 2207 - 2212 .
ZERNETSCH S , KOHNEN S , GOLDHAMMER M , et al . Trajectory prediction of cyclists using a physical model and an artificial neural network [C ] // Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV) . Piscataway : IEEE Press , 2016 : 833 - 838 .
GU Y L , HASHIMOTO Y , HSU L T , et al . Motion planning based on learning models of pedestrian and driver behaviors [C ] // Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) . Piscataway : IEEE Press , 2016 : 808 - 813 .
XIE G T , GAO H B , QIAN L J , et al . Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models [J ] . IEEE Transactions on Industrial Electronics , 2018 , 65 ( 7 ): 5999 - 6008 .
ALAHI A , GOEL K , RAMANATHAN V , et al . Social LSTM: human trajectory prediction in crowded spaces [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 961 - 971 .
PELLEGRINI S , ESS A , VAN GOOL L . Improving data association by joint modeling of pedestrian trajectories and groupings [C ] // Proceedings of the 11th European Conference on Computer Vision: Part I . Berlin : Springer , 2010 : 452 - 465 .
BISAGNO N , ZHANG B , CONCI N . Group LSTM: group trajectory prediction in crowded scenarios [C ] // Proceedings of the 17th European Conference On Computer Vision . Berlin : Springer , 2019 : 213 - 225 .
ZHANG W C , CHENG H , JOHORA F T , et al . ForceFormer: exploring social force and transformer for pedestrian trajectory prediction [C ] // Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV) . Piscataway : IEEE Press , 2023 : 1 - 7 .
SUN J H , JIANG Q H , LU C W . Recursive social behavior graph for trajectory prediction [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2020 : 657 - 666 .
ROBICQUET A , SADEGHIAN A , ALAHI A , et al . Learning social etiquette: human trajectory understanding in crowded scenes [C ] // Proceedings of the 14th European Conference on Computer Vision . Berlin : Springer , 2016 : 549 - 565 .
LI L H , PAGNUCCO M , SONG Y . Graph-based spatial transformer with memory replay for multi-future pedestrian trajectory prediction [C ] // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2022 : 2221 - 2231 .
LEE N , CHOI W , VERNAZA P , et al . DESIRE: distant future prediction in dynamic scenes with interacting agents [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2017 : 2165 - 2174 .
IVANOVIC B , PAVONE M . The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs [C ] // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2019 : 2375 - 2384 .
TANG Y C , SALAKHUTDINOV R R . Multiple futures prediction [C ] // Proceedings of the 33rd International Conference on Neural Information Processing Systems . New York : ACM Press , 2019 , 1 - 11 .
PELLEGRINI S , ESS A , SCHINDLER K , et al . You’ll never walk alone: modeling social behavior for multi-target tracking [C ] // Proceedings of the 2009 IEEE 12th International Conference on Computer Vision . Piscataway : IEEE Press , 2009 : 261 - 268 .
LERNER A , CHRYSANTHOU Y , LISCHINSKI D . Crowds by ex-ample [J ] . Computer Graphics Forum , 2007 , 26 ( 3 ): 655 - 664 .
MANGALAM K , AN Y , GIRASE H , et al . From goals, waypoints & paths to long term human trajectory forecasting [C ] // Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2021 : 15213 - 15222 .
KOSARAJU V , SADEGHIAN A , MARTÍN-MARTÍN R , et al . Social-BiGAT multimodal trajectory forecasting using bicycle-gan and graph attention networks [J ] . arXiv Preprint , arXiv: 1907.03395 , 2019 .
GUPTA A , JOHNSON J , LI F F , et al . Social GAN: socially acceptable trajectories with generative adversarial networks [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 2255 - 2264 .
EIFFERT S , LI K M , SHAN M , et al . Probabilistic crowd GAN: multimodal pedestrian trajectory prediction using a graph vehicle-pedestrian attention network [J ] . IEEE Robotics and Automation Letters , 2020 , 5 ( 4 ): 5026 - 5033 .
YU C J , MA X , REN J W , et al . Spatio-temporal graph transformer networks for pedestrian trajectory prediction [C ] // Proceedings of the 16th European Conference Computer Vision . Berlin : Springer , 2020 : 507 - 523 .
MANGALAM K , GIRASE H , AGARWAL S , et al . It is not the journey but the destination: endpoint conditioned trajectory prediction [C ] // Proceedings of the 16th European Conference Computer Vision . Berlin : Springer , 2020 : 759 - 776 .
WU Y , CHEN G , LI Z J , et al . HSTA: a hierarchical spatio-temporal attention model for trajectory prediction [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 11 ): 11295 - 11307 .
PANG S M , CAO J X , JIAN M Y , et al . BR-GAN: a pedestrian trajectory prediction model combined with behavior recognition [J ] . IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 12 ): 24609 - 24620 .
CHEN X B , ZHANG H J , HU Y , et al . VNAGT: variational non-autoregressive graph transformer network for multi-agent trajectory prediction [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 10 ): 12540 - 12552 .
KE K X , YANG J , LIU Y J , et al . Social lode: human trajectory prediction with latent odes [C ] // Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Piscataway : IEEE Press , 2024 : 5360 - 5364 .
SUN L T , ROELOFS R , CAINE B , et al . CausalAgents: a robustness benchmark for motion forecasting [C ] // Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA) . Piscataway : IEEE Press , 2024 : 6820 - 6827 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构