浏览全部资源
扫码关注微信
山西财经大学信息学院,山西 太原 030006
[ "王大铭(1988- ),男,山西运城人,博士,山西财经大学副教授、硕士生导师,主要研究方向为混沌密码理论及其应用、复杂系统分析与建模等。" ]
[ "史鹏飞(1999- ),男,山西阳泉人,山西财经大学硕士生,主要研究方向为混沌图像加密、加密图像分析等。" ]
[ "雷一航(2000- ),男,江西九江人,山西财经大学硕士生,主要研究方向为混沌保密通信、储备池计算技术等。" ]
[ "边皓冉(2000- ),男,山西大同人,山西财经大学硕士生,主要研究方向为密钥分发、机器学习等。" ]
[ "梁敏(1979- ),女,山西忻州人,博士,山西财经大学副教授、硕士生导师,主要研究方向为图像处理与模式识别、大数据技术及应用等。" ]
[ "常利伟(1986- ),男,山西怀仁人,博士,山西财经大学副教授、硕士生导师,主要研究方向为经典密码算法、量子保密通信和网络安全态势感知算法等。" ]
收稿日期:2024-10-10,
纸质出版日期:2024-10-25
移动端阅览
王大铭,史鹏飞,雷一航等.基于均匀量化的二维多尺度排列熵算法[J].通信学报,2024,45(Z1):75-86.
WANG Daming,SHI Pengfei,LEI Yihang,et al.Two-dimensional multi-scale permutation entropy algorithm based on uniform quantization[J].Journal on Communications,2024,45(Z1):75-86.
王大铭,史鹏飞,雷一航等.基于均匀量化的二维多尺度排列熵算法[J].通信学报,2024,45(Z1):75-86. DOI: 10.11959/j.issn.1000-436x.2024221.
WANG Daming,SHI Pengfei,LEI Yihang,et al.Two-dimensional multi-scale permutation entropy algorithm based on uniform quantization[J].Journal on Communications,2024,45(Z1):75-86. DOI: 10.11959/j.issn.1000-436x.2024221.
为了解决将排列熵算法扩展到二维时,子序列中相等值会导致某些排列模式的概率增加的问题,提出了一种基于均匀量化的二维多尺度排列熵(MUPE
2D
)算法。算法通过基于均匀量化重新定义排列模式,消除了相等值对计算的影响。使用MUPE
2D
算法对各种合成纹理、MIX
2D
(
p
)图像和加密图像进行了研究,结果表明,即使图像中存在大量等值,MUPE
2D
算法也能有效量化加密图像的复杂性和信息隐藏能力。综上所述,MUPE
2D
算法为评估图像复杂度提供了一种有效的手段。
In order to solve the problem that equal values in the subsequence lead to an increase in the probability of certain ordinal patterns when extending the permutation entropy algorithm to two-dimensional domain
a two-dimensional multi-scale permutation entropy based on uniform quantization (MUPE
2D
) algorithm based on uniform quantization was proposed. By redefining the ordinal patterns based on uniform quantization
the eff
ect of equal values on the calculation was eliminated. The MUPE
2D
algorithm was used to investigate various synthetic textures
MIX
2D
(
p
) images and encrypted images. The results reveal that MUPE
2D
is able to effectively quantify the complexity and information concealment capabilities of encrypted images even if there are a large number of equal values. Consequently
the MUPE
2D
algorithm provides an effective means for evaluating images.
PINCUS S M . Approximate entropy as a measure of system complexity [J ] . Proceedings of the National Academy of Sciences of the United States of America , 1991 , 88 ( 6 ): 2297 - 2301 .
RICHMAN J S , MOORMAN J R . Physiological time-series analysis using approximate entropy and sample entropy [J ] . American Journal of Physiology Heart and Circulatory Physiology , 2000 , 278 ( 6 ): H2039 - H2049 .
CHEN W T , WANG Z Z , XIE H B , et al . Characterization of surface EMG signal based on fuzzy entropy [J ] . IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2007 , 15 ( 2 ): 266 - 272 .
BANDT C , POMPE B . Permutation entropy: a natural complexity measure for time series [J ] . Physical Review Letters , 2002 , 88 ( 17 ): 174102 .
ZHU X Z , XU H Y , ZHAO J M , et al . Automated epileptic seizure detection in scalp EEG based on spatial-temporal complexity [J ] . Complexity , 2017 , 2017 ( 1 ): 5674392 .
LI Y B , WANG S , YANG Y , et al . Multiscale symbolic fuzzy entropy: an entropy denoising method for weak feature extraction of rotating machinery [J ] . Mechanical Systems and Signal Processing , 2022 , 162 : 108052 .
XU K X , WANG J . Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics [J ] . Physics Letters A , 2017 , 381 ( 8 ): 767 - 779 .
AZIZ W , ARIF M . Multiscale permutation entropy of physiological time series [C ] // Proceedings of the 2005 Pakistan Section Multitopic Conference . Piscataway : IEEE Press , 2005 : 1 - 6 .
CUESTA-FRAU D , VARELA-ENTRECANALES M , MOLINA-PICÓ A , et al . Patterns with equal values in permutation entropy: do they really matter for biosignal classification? [J ] . Complexity , 2018 ( 1 ): 1 - 15 .
ZUNINO L , OLIVARES F , SCHOLKMANN F , et al . Permutation entropy based time series analysis: equalities in the input signal can lead to false conclusions [J ] . Physics Letters A , 2017 , 381 ( 22 ): 1883 - 1892 .
BIAN C H , QIN C , MA Q D Y , et al . Modified permutation-entropy analysis of heartbeat dynamics [J ] . Physical Review E, Statistical, Nonlinear, and Soft Matter Physics , 2012 , 85 ( 2 Pt 1 ): 021906 .
CHEN Z , LI Y A , LIANG H T , et al . Improved permutation entropy for measuring complexity of time series under noisy condition [J ] . Complexity , 2019 , 2019( 1 ): 1 - 12 .
RIBEIRO H V , ZUNINO L , LENZI E K , et al . Complexity-entropy causality plane as a complexity measure for two-dimensional patterns [J ] . PLoS One , 2012 , 7 ( 8 ): e40689 .
SIGAKI H Y D , PERC M , RIBEIRO H V . History of art paintings through the lens of entropy and complexity [J ] . Proceedings of the National Academy of Sciences of the United States of America , 2018 , 115 ( 37 ): 85 - 94 .
MOORE C J . A threshold structure metric for medical image interrogation: the 2D extension of approximate entropy [C ] // Proceedings of the 2016 20th International Conference Information Visualisation (IV) . Piscataway : IEEE Press , 2016 : 336 - 341 .
SILVA L V , SENRA FILHO A S , FAZAN V S , et al . Two-dimensional sample entropy: assessing image texture through irregularity [J ] . Biomedical Physics & Engineering Express , 2016 , 2 ( 4 ): 045002 .
HUMEAU-HEURTIER A , OMOTO A C M , SILVA L E V . Bi-dimensional multiscale entropy: relation with discrete Fourier transform and biomedical application [J ] . Computers in Biology and Medicine , 2018 , 100 : 36 - 40 .
HILAL M , BERTHIN C , MARTIN L , et al . Bidimensional multiscale fuzzy entropy and its application to pseudoxanthoma elasticum [J ] . IEEE Transactions on Bio-Medical Engineering , 2020 , 67 ( 7 ): 2015 - 2022 .
AZAMI H , SILVA L E V D , OMOTO A C M , et al . Two-dimensional dispersion entropy: an information-theoretic method for irregularity analysis of images [J ] . Signal Processing: Image Communication , 2019 , 75 : 178 - 187 .
MOREL C , HUMEAU-HEURTIER A . Multiscale permutation entropy for two-dimensional patterns [J ] . Pattern Recognition Letters , 2021 , 150 : 139 - 146 .
LI J Q , ZHENG J D , PAN H Y , et al . Use of two-dimensional refined composite multi-scale time-frequency dispersion entropy for rolling bearing condition monitoring [J ] . Measurement , 2023 , 214 : 112808 .
LI J Q , ZHENG J D , PAN H Y , et al . Two-dimensional composite multi-scale time–frequency reverse dispersion entropy-based fault diagnosis for rolling bearing [J ] . Nonlinear Dynamics , 2023 , 111 ( 8 ): 7525 - 7546 .
GAUDÊNCIO A S , AZAMI H , CARDOSO J M , et al . Bidimensional ensemble entropy: concepts and application to emphysema lung computerized tomography scans [J ] . Computer Methods and Programs in Biomedicine , 2023 , 242 : 107855 .
SIMON P , UMA V . Deep learning based feature extraction for texture classification [J ] . Procedia Computer Science , 2020 , 171 : 1680 - 1687 .
FADLALLAH B , CHEN B D , KEIL A , et al . Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information [J ] . Physical Review E, Statistical, Nonlinear, and Soft Matter Physics , 2013 , 87 ( 2 ): 022911 .
AZAMI H , ESCUDERO J . Amplitude-aware permutation entropy: illustration in spike detection and signal segmentation [J ] . Computer Methods and Programs in Biomedicine , 2016 , 128 : 40 - 51 .
HUMEAU-HEURTIER A . The multiscale entropy algorithm and its variants: a review [J ] . Entropy , 2015 , 17 ( 5 ): 3110 - 3123 .
WEI L Y , LEVOY M . Fast texture synthesis using tree-structured vector quantization [C ] // Proceedings of the 27th annual conference on Computer graphics and interactive techniques . New York : ACM Press , 2000 : 479 - 488 .
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构