浏览全部资源
扫码关注微信
兰州交通大学电子与信息工程学院,甘肃 兰州 730070
[ "赵庶旭(1976- ),男,山东青岛人,博士,兰州交通大学教授,主要研究方向为智能交通、边缘计算等。" ]
[ "夏心雨(1997- ),女,黑龙江大庆人,兰州交通大学硕士生,主要研究方向为边缘计算、边缘联盟等。" ]
[ "王小龙(1989- ),男,甘肃定西人,博士,兰州交通大学讲师,主要研究方向为边缘计算、边缘联盟等。" ]
收稿日期:2024-09-02,
修回日期:2024-12-19,
纸质出版日期:2024-12-25
移动端阅览
赵庶旭,夏心雨,王小龙.基于不确定联盟博弈的EIP收益预估策略研究[J].通信学报,2024,45(12):111-123.
ZHAO Shuxu,XIA Xinyu,WANG Xiaolong.Uncertain edge coalition game based EIP revenue estimation strategy[J].Journal on Communications,2024,45(12):111-123.
赵庶旭,夏心雨,王小龙.基于不确定联盟博弈的EIP收益预估策略研究[J].通信学报,2024,45(12):111-123. DOI: 10.11959/j.issn.1000-436x.2024220.
ZHAO Shuxu,XIA Xinyu,WANG Xiaolong.Uncertain edge coalition game based EIP revenue estimation strategy[J].Journal on Communications,2024,45(12):111-123. DOI: 10.11959/j.issn.1000-436x.2024220.
边缘计算环境中存在通信信道风险和边缘服务器故障等风险因素,会导致处理任务所需的计算资源与边缘联盟分配的资源产生失配问题,对此,提出了一种基于不确定联盟结构博弈的边缘联盟及其成员边缘基础设施供应商(EIP)的收益预估方法。首先通过混合整数线性规划方法构建资源调度模型以最大化边缘联盟收益。其次引入信念结构对联盟收益进行高、中、低和未知4种情况的概率进行表征。最后利用不确定Owen值提前一个时隙对联盟中EIP进行区间收益预估。仿真结果表明,所提预估方法在通信信道风险以及服务器故障2种风险下的准确率分别为91.25%、82.5%,平均准确率为86.88%,且在考虑周期性任务到达的情况下,实现了对EIP收益区间的准确预估。
In the edge computing environment
there are risks such as communication channel risks and edge server failures
which can lead to a mismatch between the computing resources required for task processing and the resources allocated by the edge coalition. In response
a revenue forecasting method for the edge coalition and its member edge infrastructure provider (EIP) based on the game theory of uncertain coalition structures was proposed. Firstly
a resource scheduling model was constructed using a mixed integer linear programming method to maximize the revenue of the edge coalition. Secondly
a belief structure was introduced to characterize the probabilities of high
medium
low
and unknown scenarios for the coalition's revenue. Finally
the uncertain Owen value was used to estimate the interval revenue of the EIP in the coalition one time slot in advance. The simulation results show that the accuracy of this forecasting method under the two risks of channel risk and server failure is 91.25% and 82.5% respectively
with an average accuracy of 86.88%
achieving a relatively accurate forecast of the EIP’ revenue.
HU Y C , PATEL M , SABELLA D , et al . Mobile edge computing—a key technology towards 5G [M ] . Sophia Antipolis : ETSI , 2015 .
MAO Y Y , YOU C S , ZHANG J , et al . A survey on mobile edge computing: the communication perspective [J ] . IEEE Communications Surveys and Tutorials , 2017 , 19 ( 4 ): 2322 - 2358 .
ABBAS N , ZHANG Y , TAHERKORDI A , et al . Mobile edge computing: a survey [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 1 ): 450 - 465 .
许斌 , 赵云凯 , 朱剑鸣 , 等 . 移动边缘计算不确定性任务持续卸载及资源分配方法 [J ] . 软件学报 , 2024 , 35 ( 3 ): 1466 - 1484 .
XU B , ZHAO Y K , ZHU J M , et al . Continuous offloading and resource allocation method of uncertain tasks in mobile edge computing [J ] . Journal of Software , 2024 , 35 ( 3 ): 1466 - 1484 .
STANTCHEV V , BARNAWI A , GHULAM S , et al . Smart items, fog and cloud computing as enablers of servitization in healthcare [J ] . Sensors and Transducers , 2015 , 185 ( 2 ): 121 - 128 .
LI Y J , ANH N T , NOOH A S , et al . Dynamic mobile cloudlet clustering for fog computing [C ] // Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC) . Piscataway : IEEE Press , 2018 : 1 - 4 . [LinkOut ]
ZHAO H V , LIN W S , RAY LIU K J . Cooperation and coalition in multimedia fingerprinting colluder social networks [J ] . IEEE Transactions on Multimedia , 2012 , 14 ( 3 ): 717 - 733 .
HAMMOUD A , SAMI H , MOURAD A , et al . AI, blockchain, and vehicular edge computing for smart and secure IoV: challenges and directions [J ] . IEEE Internet of Things Magazine , 2020 , 3 ( 2 ): 68 - 73 .
YU X H , HE M K , SUN H X , et al . Uncertain coalition structure game with payoff of belief structure [J ] . Applied Mathematics and Computation , 2020 , 372 : 125000 .
HU Y N , LI C S , ZHANG K J . A method of searching for optimal coalition structure for solving resource scheduling problem of overall load balancing in edge computing environments [J ] . Journal of Physics: Conference Series , 2020 , 1550 ( 3 ): 032080 .
ZHANG K J , HU Y N , TIAN F , et al . A coalition-structure’s generation method for solving cooperative computing problems in edge computing environments [J ] . Information Sciences , 2020 , 536 : 372 - 390 .
赵庶旭 , 韦萍 , 王小龙 . 多任务并发边缘计算环境中最优联盟结构生成策略 [J ] . 通信学报 , 2023 , 44 ( 2 ): 172 - 184 .
ZHAO S X , WEI P , WANG X L . Optimal coalition structure generation strategy in multi-task concurrent edge computing environment [J ] . Journal on Communications , 2023 , 44 ( 2 ): 172 - 184 .
LIN C C , YAO C A , WEI H Y . Collaborative edge caching with multiple virtual reality service providers using coalition games [C ] // Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2023 : 1 - 6 .
CAO Z , ZHANG H G , LIU B Y , et al . A game-theoretic framework for revenue sharing in edge-cloud computing system [C ] // Proceedings of the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC) . Piscataway : IEEE Press , 2018 : 1 - 8 .
WANG Y Z , ZHAO D , GUO Z X , et al . CEL: cost-aware edge-assisted livecast via optimization with shapley value [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 5 ): 7805 - 7816 .
ANGLANO C , CANONICO M , CASTAGNO P , et al . Profit-aware coalition formation in fog computing providers: a game-theoretic approach [J ] . Concurrency and Computation: Practice and Experience , 2020 , 32 ( 21 ): 1 - 19 .
HE X Q , WANG X , WANG S , et al . A shapley value-based incentive mechanism in collaborative edge computing [C ] // Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2021 : 1 - 7 .
SARAH A , NENCIONI G , KHAN M M I . Resource allocation in multi-access edge computing for 5G-and-beyond networks [J ] . Computer Networks , 2023 , 227 : 109720 .
ZHANG Q , GUI L , HOU F , et al . Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN [J ] . IEEE Transactions on Communications , 2019 , 67 ( 6 ): 4132 - 4150 .
FU K J , WANG C Y , WEI H Y . Straggler mitigation in edge-based split learning with coalition formation game [C ] // Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring) . Piscataway : IEEE Press , 2024 : 1 - 7 .
LIU B Y , GUO J J , LI C L , et al . Workload forecasting based elastic resource management in edge cloud [J ] . Computers & Industrial Engineering , 2020 , 139 : 106136 .
王小龙 . 面向水平维度的边缘联盟结构生成研究 [D ] . 兰州 : 兰州交通大学 , 2023 .
WANG X Research on edge coalition structure generation oriented to horizontal dimensions [D ] Lanzhou : Lanzhou Jiaotong University , 2023 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构