浏览全部资源
扫码关注微信
1.西安交通大学智能网络与网络安全教育部重点实验室,陕西 西安 710049
2.西安交通大学自动化科学与工程学院,陕西 西安 710049
[ "牛红峰(1989- ),男,河南新乡人,西安交通大学博士生,主要研究方向为网络安全与人机交互。" ]
[ "李嘉伟(2000- ),男,河北沧州人,西安交通大学硕士生,主要研究方向为网络安全与人机交互。" ]
[ "宋云鹏(1990- ),男,陕西宝鸡人,博士,西安交通大学副教授、硕士生导师,主要研究方向为人机交互、安全与隐私、混合增强智能。" ]
[ "蔡忠闽(1975- ),男,福建晋江人,博士,西安交通大学教授、博士生导师,主要研究方向为智能人机交互、混合增强智能、电力系统智能化、虚拟现实和增强现实。" ]
收稿日期:2024-07-10,
修回日期:2024-11-11,
纸质出版日期:2024-11-25
移动端阅览
牛红峰,李嘉伟,宋云鹏等.基于意图嵌入的社交机器人检测方法[J].通信学报,2024,45(11):194-205.
NIU Hongfeng,LI Jiawei,SONG Yunpeng,et al.Intention embedding method based social bot detection[J].Journal on Communications,2024,45(11):194-205.
牛红峰,李嘉伟,宋云鹏等.基于意图嵌入的社交机器人检测方法[J].通信学报,2024,45(11):194-205. DOI: 10.11959/j.issn.1000-436x.2024205.
NIU Hongfeng,LI Jiawei,SONG Yunpeng,et al.Intention embedding method based social bot detection[J].Journal on Communications,2024,45(11):194-205. DOI: 10.11959/j.issn.1000-436x.2024205.
人工智能生成内容技术显著提升了社交机器人的伪装能力,给现有的机器人检测方法带来新的挑战。通过对社交平台用户意图进行建模,提出一种基于意图嵌入的社交机器人检测方法,从而避免直接在行为层面检测伪装能力大幅提升的机器人这一难题。实验结果表明,采用意图嵌入的检测模型相比未使用意图嵌入的模型,社交机器人检测准确率提高了5.58个百分点,并增强了对不同类型社交机器人的识别能力,验证了意图嵌入在提升人机检测任务性能中的有效性。
Artificial intelligence generated content technology has significantly enhanced the disguise capabilities of social bots
presenting new challenges to existing bot detection methods. By modeling the intentions of social media users through intention representation
a intention embedding method based social bot detection was proposed
thereby avoiding the difficulty of directly detecting bots with enhanced behavioral camouflage at the action level on social platforms. Experimental results show that the detection model using intention embedding improves the accuracy of social bot detection by 5.58 percentage points compared to models not utilizing intention embedding
and it enhances the recognition capability of specific types of social bots
verifying the effectiveness of intention embedding in improving the performance of human-bot detection tasks.
KUDUGUNTA S , FERRARA E . Deep neural networks for bot detection [J ] . Information Sciences , 2018 , 467 : 312 - 322 .
FENG S B , TAN Z , WAN H N , et al . Twibot-22: towards graph-based twitter bot detection [J ] . Advances in Neural Information Processing Systems , 2022 , 35 : 35254 - 35269 .
ARIN E , KUTLU M . Deep learning based social bot detection on twitter [J ] . IEEE Transactions on Information Forensics and Security , 2023 , 18 : 1763 - 1772 .
GUNARATHNE P , RUI H X , SEIDMANN A . Racial bias in customer service: evidence from twitter [J ] . Information Systems Research , 2022 , 33 ( 1 ): 43 - 54 .
师文 , 陈昌凤 . 社交机器人在新闻扩散中的角色和行为模式研究: 基于《纽约时报》“修例”风波报道在Twitter上扩散的分析 [J ] . 新闻与传播研究 , 2020 , 27 ( 5 ): 5 - 20, 126 .
SHI W , CHEN C F . The role and behavior pattern of social bots in the diffusion of news: an analysis of the spread of coverages of anti-amendment bill campaign by the New York times on twitter [J ] . Journalism & Communication , 2020 , 27 ( 5 ): 5 - 20, 126 .
OUNI S , FKIH F , OMRI M N . BERT- and CNN-based TOBEAT approach for unwelcome tweets detection [J ] . Social Network Analysis and Mining , 2022 , 12 ( 1 ): 144 - 162 .
YE S , TAN Z X , LEI Z Y , et al . HOFA: twitter bot detection with homophily-oriented augmentation and frequency adaptive attention [J ] . arxiv Priprent , arxiv: 2306.12870 , 2023 .
ANTONAKAKI D , FRAGOPOULOU P , IOANNIDIS S . A survey of twitter research: data model, graph structure, sentiment analysis and attacks [J ] . Expert Systems with Applications , 2021 , 164 : 114006 .
LIU Y H , TAN Z X , WANG H , et al . BotMoE: twitter bot detection with community-aware mixtures of modal-specific experts [C ] // Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval . New York : ACM Press , 2023 : 485 - 495 .
NAJARI S , SALEHI M , FARAHBAKHSH R . GANBOT: a GAN-based framework for social bot detection [J ] . Social Network Analysis and Mining , 2022 , 12 ( 1 ): 4 - 15 .
LINGAM G , ROUT R R , SOMAYAJULU D , et al . Social botnet community detection: a novel approach based on behavioral similarity in twitter network using deep learning [C ] // Proceedings of the 15th ACM Asia Conference on Computer and Communications Security . New York : ACM Press , 2020 : 708 - 718 .
HEIDARI M , JONES J H , UZUNER O . Deep contextualized word embedding for text-based online user profiling to detect social bots on twitter [C ] // Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW) . Piscataway : IEEE Press , 2020 : 480 - 487 .
ZIMMERMAN M , BRATMAN M E . Review essay: intention, plans, and practical reason [J ] . Philosophy and Phenomenological Research , 1989 , 50 ( 1 ): 189 .
PING Y K , GAO C , LIU T C , et al . User consumption intention prediction in meituan [C ] // Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining . New York : ACM Press , 2021 : 3472 - 3482 .
WU M , LOU W T , LAHIJANIAN M , et al . Gaze-based intention anticipation over driving manoeuvres in semi-autonomous vehicles [C ] // Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Piscataway : IEEE Press , 2019 : 6210 - 6216 .
RAFFERTY J , NUGENT C D , LIU J , et al . From activity recognition to intention recognition for assisted living within smart homes [J ] . IEEE Transactions on Human-Machine Systems , 2017 , 47 ( 3 ): 368 - 379 .
WU M , MILLER R C , LITTLE G . Web wallet: preventing phishing attacks by revealing user intentions [C ] // Proceedings of the Second Symposium on Usable Privacy and Security-SOUPS’06 . New York : ACM Press , 2006 : 102 - 113 .
JI T T , FANG B X , CUI X , et al . Framework for understanding intention-unbreakable malware [J ] . Science China Information Sciences , 2023 , 66 ( 4 ): 142104 .
PANG R , ZHANG X Y , JI S L , et al . AdvMind: inferring adversary intent of black-box attacks [C ] // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York : ACM Press , 2020 : 1899 - 1907 .
CRESCI S , PIETRO R D , PETROCCHI M , et al . The paradigm-shift of social spambots: evidence, theories, and tools for the arms race [C ] // Proceedings of the 26th International Conference on World Wide Web Companion-WWW’17 Companion . New York : ACM Press , 2017 : 963 - 972 .
STRAUSS A L , CORBIN J . Open coding [J ] . Social Research Methods: A Reader , 2004 : 303 - 306 .
GUTIERREZ-VASQUES X , BENTZ C , SAMARDŽIĆ T . Languages through the looking glass of BPE compression [J ] . Computational Linguistics , 2023 , 49 ( 4 ): 943 - 1001 .
BISHOP C M . Pattern recognition and machine learning [J ] . Springer Google Schola , 2006 , 2 : 1122 - 1128 .
SHEN C , CHEN Y F , GUAN X H . Performance evaluation of implicit smartphones authentication via sensor-behavior analysis [J ] . Information Sciences , 2018 , 430 : 538 - 553 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构