浏览全部资源
扫码关注微信
1.海军工程大学信息安全系,湖北 武汉 430033
2.信阳职业技术学院信息与通信工程学院,河南 信阳 464000
3.信阳师范大学计算机与信息技术学院,河南 信阳464000
4.河南省教育大数据分析与应用重点实验室,河南 信阳 464000
5.海军工程大学作战运筹与规划系,湖北 武汉 430033
[ "王坤(1981- ),女,河南信阳人,海军工程大学博士生,信阳职业技术学院副教授,主要研究方向为网络安全、人工智能、信息对抗。" ]
[ "付钰(1982- ),女,湖北武汉人,博士,海军工程大学教授、博士生导师,主要研究方向为信息安全、人工智能。" ]
[ "段雪源(1981- ),男,河南开封人,博士,信阳师范大学讲师,主要研究方向为人工智能、信息处理、网络安全。" ]
[ "俞艺涵(1992- ),男,浙江金华人,博士,海军工程大学讲师,主要研究方向为网络安全、运筹分析。" ]
[ "刘涛涛(1996- ),男,江西吉水人,海军工程大学博士生,主要研究方向为网络安全、网络信息对抗。" ]
收稿日期:2024-09-03,
修回日期:2024-11-05,
纸质出版日期:2024-11-25
移动端阅览
王坤,付钰,段雪源等.基于深度学习的SDN异常流量分布式检测方法[J].通信学报,2024,45(11):114-130.
WANG Kun,FU Yu,DUAN Xueyuan,et al.Distributed abnormal traffic detection method for SDN based on deep learning[J].Journal on Communications,2024,45(11):114-130.
王坤,付钰,段雪源等.基于深度学习的SDN异常流量分布式检测方法[J].通信学报,2024,45(11):114-130. DOI: 10.11959/j.issn.1000-436x.2024199.
WANG Kun,FU Yu,DUAN Xueyuan,et al.Distributed abnormal traffic detection method for SDN based on deep learning[J].Journal on Communications,2024,45(11):114-130. DOI: 10.11959/j.issn.1000-436x.2024199.
针对传统异常流量检测方法在执行大规模软件定义网络(SDN)的检测任务时,存在运算开销大、共享链路繁忙,容易引起网络设备单点故障,导致软件定义网络服务质量下降甚至网络瘫痪等问题,提出一种基于深度学习的SDN异常流量分布式检测方法。该方法将部署在云端服务器的判别器与若干部署在SDN控制器的生成器构造为“一对多”的分布式生成对抗网络(D-VAE-WGAN),利用正常流量样本完成对D-VAE-WGAN的协同训练,在控制器上生成具有独立检测功能的异常流量检测代理,以实现大规模SDN环境下各控制器子网中异常流量的分布式检测。实验结果表明,该方法可以快速、准确地检测出大规模SDN中的异常样本,在准确率、召回率等检测指标上优于传统方法;并且具备对未知异常的检测能力。
Addressing the high computational expenses
congested shared links
and propensity for single-point failures in network devices that can lead to a degradation of software defined network (SDN) service quality or even network paralysis during the execution of large-scale SDN detection tasks by traditional abnormal traffic detection methods
a distributed abnormal traffic detection method for SDN based on deep learning was proposed. This method constructed a “one-to-many” distributed generative adversarial network (D-VAE-WGAN) with a discriminator deployed on a cloud server and multiple generators deployed on SDN controllers. Utilizing normal traffic samples
collaborative training of the D-VAE-WGAN was completed
resulting in independent abnormal traffic detection proxies on controllers
enabling distributed detection of abnormal traffic within each controller's subnet in a large-scale SDN environment. Experimental results indicate that this method can rapidly and accurately detect abnormal samples in large-scale SDN
outperforming traditional methods in detection metrics such as accuracy and recall rate
and can detect unknown anomalies.
ALHIJAWI B , ALMAJALI S , ELGALA H , et al . A survey on DoS/DDoS mitigation techniques in SDNs: classification, comparison, solutions, testing tools and datasets [J ] . Computers and Electrical Engineering , 2022 , 99 : 107706 .
CHAHAL J K , BHANDARI A , BEHAL S . DDoS attacks & defense mechanisms in SDN-enabled cloud: taxonomy, review and research challenges [J ] . Computer Science Review , 2024 , 53 : 100644 .
VERGARA J , GARZÓN C , BOTERO J F . A hybrid strategy for DoS attacks detection and Mitigation on SDN enabled real scenarioss [C ] // Proceedings of the International Congress on Information and Communication Technology . Berlin : Springer , 2023 : 705 - 714 .
BHAYO J , SHAH S A , HAMEED S , et al . Towards a machine learning-based framework for DDOS attack detection in software-defined IoT (SD-IoT) networks [J ] . Engineering Applications of Artificial Intelligence , 2023 , 123 : 106432 .
段雪源 , 付钰 , 王坤 , 等 . 基于简单统计特征的LDoS攻击检测方法 [J ] . 通信学报 , 2022 , 43 ( 11 ): 53 - 64 .
DUAN X Y , FU Y , WANG K , et al . LDoS attack detection method based on simple statistical features [J ] . Journal on Communications , 2022 , 43 ( 11 ): 53 - 64 .
JAFARIAN T , MASDARI M , GHAFFARI A , et al . A survey and classification of the security anomaly detection mechanisms in software defined networks [J ] . Cluster Computing , 2021 , 24 ( 2 ): 1235 - 1253 .
贾锟 , 王君楠 , 刘峰 . SDN环境下的DDoS检测与缓解机制 [J ] . 信息安全学报 , 2021 , 6 ( 1 ): 17 - 31 .
JIA K , WANG J N , LIU F . DDoS detection and mitigation framework in SDN [J ] . Journal of Cyber Security , 2021 , 6 ( 1 ): 17 - 31 .
VAN N D , HUY L D , TRUONG C Q , et al . Applying dynamic threshold in SDN to detect DDoS attacks [C ] // Proceedings of the 2022 International Conference on Advanced Technologies for Communications (ATC) . Piscataway : IEEE Press , 2022 : 344 - 349 .
JASIM M N , GAATA M T . K-Means clustering-based semi-supervised for DDoS attacks classification [J ] . Bulletin of Electrical Engineering and Informatics , 2022 , 11 ( 6 ): 3570 - 3576 .
CHENG Q M , WU C M , ZHOU H F , et al . Machine learning based malicious payload identification in software-defined networking [J ] . Journal of Network and Computer Applications , 2021 , 192 : 103186 .
KUMAR R , AGRAWAL N . Software defined networks (SDNs) for environmental surveillance: a survey [J ] . Multimedia Tools and Applications , 2024 , 83 ( 4 ): 11323 - 11365 .
KINGMA D P , WELLING M . Auto-encoding variational bayes [J ] . arXiv Preprint , arXiv: 1312 . 6114 v 11 , 2013 .
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial network [J ] . arXiv Preprint , arXiv: 1406 . 2661 v 1 , 2014 .
BAVANI K , RAMKUMAR M P , SELVAN G S R E . Statistical approach based detection of distributed denial of service attack in a software defined network [C ] // Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) . Piscataway : IEEE Press , 2020 : 380 - 385 .
周启钊 , 于俊清 , 李冬 . SDN控制层泛洪防御机制研究: 检测与缓解 [J ] . 通信学报 , 2021 , 42 ( 11 ): 41 - 53 .
ZHOU Q Z , YU J Q , LI D . Research on flood defense mechanism of SDN control layer: detection and mitigation [J ] . Journal on Communications , 2021 , 42 ( 11 ): 41 - 53 .
ZOLOTUKHIN M , KUMAR S , HÄMÄLÄINEN T . Reinforcement learning for attack mitigation in SDN-enabled networks [C ] // Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft) . Piscataway : IEEE Press , 2020 : 282 - 286 .
TAYFOUR O E , MARSONO M N . Collaborative detection and mitigation of DDoS in software-defined networks [J ] . The Journal of Supercomputing , 2021 , 77 ( 11 ): 13166 - 13190 .
SATHEESH N , RATHNAMMA M V , RAJESHKUMAR G , et al . Flow-based anomaly intrusion detection using machine learning model with software defined networking for OpenFlow network [J ] . Microprocessors and Microsystems , 2020 , 79 : 103285 .
SEBBAR A , ZKIK K , BADDI Y , et al . MitM detection and defense mechanism CBNA-RF based on machine learning for large-scale SDN context [J ] . Journal of Ambient Intelligence and Humanized Computing , 2020 , 11 ( 12 ): 5875 - 5894 .
WANG K , FU Y , DUAN X Y , et al . Detection and mitigation of DDoS attacks based on multi-dimensional characteristics in SDN [J ] . Scientific Reports , 2024 , 14 ( 1 ): 16421 .
SRI V G , NAGARAJAN R . A novel bidirectional LSTM model for network intrusion detection in SDN-IoT network [J ] . Computing , 2024 , 106 ( 8 ): 2613 - 2642 .
YASER A L , MOUSA H M , HUSSEIN M . Improved DDoS detection utilizing deep neural networks and feedforward neural networks as autoencoder [J ] . Future Internet , 2022 , 14 ( 8 ): 240 .
NOVAES M P , CARVALHO L F , LLORET J , et al . Adversarial deep learning approach detection and defense against DDoS attacks in SDN environments [J ] . Future Generation Computer Systems , 2021 , 125 : 156 - 167 .
WANG P , WANG Z X , YE F , et al . ByteSGAN: a semi-supervised generative adversarial network for encrypted traffic classification in SDN Edge Gateway [J ] . Computer Networks , 2021 , 200 : 108535 .
SAMAAN S S , JEIAD H A . Feature-based real-time distributed denial of service detection in SDN using machine learning and Spark [J ] . Bulletin of Electrical Engineering and Informatics , 2023 , 12 ( 4 ): 2302 - 2312 .
PATIL N V , KRISHNA C R , KUMAR K , et al . E-Had: a distributed and collaborative detection framework for early detection of DDoS attacks [J ] . Journal of King Saud University - Computer and Information Sciences , 2022 , 34 ( 4 ): 1373 - 1387 .
SHUKLA P , KRISHNA C R , PATIL N V . SDDA-IoT: storm-based distributed detection approach for IoT network traffic-based DDoS attacks [J ] . Cluster Computing , 2024 , 27 ( 5 ): 6397 - 6424 .
KAUR A , KRISHNA C R , PATIL N V . K-DDoS-SDN: a distributed DDoS attacks detection approach for protecting SDN environment [J ] . Concurrency and computation: practice and experience , 2024 , 36 ( 3 ): 1 - 19 .
EZEH D A , DE OLIVEIRA J . An SDN controller-based framework for anomaly detection using a GAN ensemble algorithm [J ] . Infocommunications Journal , 2023 , 15 ( 2 ): 29 - 36 .
PARRA G D L T , RAD P , CHOO K K R , et al . Detecting Internet of things attacks using distributed deep learning [J ] . Journal of Network and Computer Applications , 2020 , 163 : 102662 .
FENG H F , ZHANG W T , LIU Y , et al . Multi-domain collaborative two-level DDoS detection via hybrid deep learning [J ] . Computer Networks , 2024 , 242 : 110251 .
肖警续 , 郭渊博 , 常朝稳 , 等 . 基于SDN的物联网边缘节点间数据流零信任管理 [J ] . 通信学报 , 2024 , 45 ( 7 ): 101 - 116 .
XIAO J X , GUO Y B , CHANG C W , et al . Zero trust management of data flow between IoT edge nodes based on SDN [J ] . Journal on Communications , 2024 , 45 ( 7 ): 101 - 116 .
陈何雄 , 罗宇薇 , 韦云凯 , 等 . 基于联邦学习的SDN异常流量协同检测技术 [J ] . 计算机工程 , 2023 , 49 ( 3 ): 168 - 176 .
CHEN H X , LUO Y W , WEI Y K , et al . Collaborative detection technology of SDN abnormal traffic based on federated learning [J ] . Computer Engineering , 2023 , 49 ( 3 ): 168 - 176 .
SHU J G , ZHOU L , ZHANG W Z , et al . Collaborative intrusion detection for VANETs: a deep learning-based distributed SDN approach [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 7 ): 4519 - 4530 .
段雪源 , 付钰 , 王坤 . 基于VAE-WGAN的多维时间序列异常检测方法 [J ] . 通信学报 , 2022 , 43 ( 3 ): 1 - 13 .
DUAN X Y , FU Y , WANG K . Multi-dimensional time series anomaly detection method based on VAE-WGAN [J ] . Journal on Communications , 2022 , 43 ( 3 ): 1 - 13 .
ELSAYED M S , LE-KHAC N A , JURCUT A D . InSDN: a novel SDN intrusion dataset [J ] . IEEE Access , 2020 , 8 : 165263 - 165284 .
KRISHNAN P , DUTTAGUPTA S , ACHUTHAN K . VARMAN: Multi-plane security framework for software defined networks [J ] . Computer Communications , 2019 , 148 : 215 - 239 .
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构