浏览全部资源
扫码关注微信
1.北京邮电大学网络与交换技术国家重点实验室,北京 100876
2.紫金山实验室,江苏 南京 211111
[ "朱海龙(1987- ),男,山东菏泽人,博士,北京邮电大学讲师,主要研究方向为工业互联网、确定性网络、工业以太网、软件定义网络、时间敏感网络和车载网络等。" ]
[ "杨帆(1981- ),男,黑龙江哈尔滨人,博士,北京邮电大学讲师,主要研究方向为软件定义网络、高性能路由交换技术等。" ]
[ "蒋如一(2001- ),女,湖南邵阳人,北京邮电大学硕士生,主要研究方向为算力网络、软件定义网络、确定性网络、时间敏感网络等。" ]
[ "贾庆民(1990- ),男,山东泰安人,博士,紫金山实验室研究员,主要研究方向为算力网络、确定性网络、边缘智能、工业互联网等。" ]
[ "周晓茂(1993- ),男,安徽阜阳人,博士,紫金山实验室研究员,主要研究方向为边缘智能、算网自智、生成式人工智能等。" ]
[ "谢人超(1984- ),男,福建南平人,博士,北京邮电大学教授、博士生导师,主要研究方向为信息中心网络、工业互联网、算力网络、边缘计算、无服务器计算。" ]
[ "黄韬(1980- ),男,重庆人,博士,北京邮电大学教授、博士生导师,主要研究方向为路由与交换、软件定义网络、内容分发网络、确定性网络、算力网络等。" ]
收稿日期:2024-02-26,
修回日期:2024-06-17,
纸质出版日期:2024-10-25
移动端阅览
朱海龙,杨帆,蒋如一等.算网自智:研究进展与展望[J].通信学报,2024,45(10):191-206.
ZHU Hailong,YANG Fan,JIANG Ruyi,et al.Computing-network intelligence: research progress and prospects[J].Journal on Communications,2024,45(10):191-206.
朱海龙,杨帆,蒋如一等.算网自智:研究进展与展望[J].通信学报,2024,45(10):191-206. DOI: 10.11959/j.issn.1000-436x.2024174.
ZHU Hailong,YANG Fan,JIANG Ruyi,et al.Computing-network intelligence: research progress and prospects[J].Journal on Communications,2024,45(10):191-206. DOI: 10.11959/j.issn.1000-436x.2024174.
尽管算力网络可以通过网络连接并灵活地调度计算资源,但在实际落地应用中仍然缺乏智能性和灵活性。针对算力网络亟须提高智能化水平的问题,首先简要引出了算网自智的背景和概念;接着提出了一种新型的算网自智基本架构和工作机制,通过算网感知、智能决策、算力路由、自动化和自优化等关键技术实现算力网络多维资源的智能资源分配和服务调度;最后,对算网自智未来的主要研究方向和技术挑战作了展望。算网自智作为未来的必然发展趋势,可以很好地解决运维流程复杂、过度依赖人工经验、难以自适应动态变化的环境等一系列问题。
Although the computing power network (CPN) can connect via the Internet and flexibly schedule computing resources
it still lacks intelligence and flexibility in practical applications. To address the need for enhanced intelligence in computing power networks
the background and concept of the computing-network intelligence (CNI) were first introduced briefly. Then
followed by the proposal of a novel basic architecture and operational mechanism for CNI
intelligent resource allocation and service scheduling of multi-dimensional resources were achieved through key technologies such as computing-network perception
intelligent decision-making
computing power routing
automation
and self-optimization. Finally
future research directions and technical challenges were discussed. CNI is recognized as an inevitable trend for the future
effectively addressing issues such as complex operational processes
excessive reliance on human experience
and difficulties in adapting to dynamically changing environments.
CAI Q , ZHOU Y Q , LIU L , et al . Collaboration of heterogeneous edge computing paradigms: how to fill the gap between theory and practice [J ] . IEEE Wireless Communications , 2024 , 31 ( 1 ): 110 - 117 .
ZHOU Y Q , TIAN L , LIU L , et al . Fog computing enabled future mobile communication networks: a convergence of communication and computing [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 20 - 27 .
ZHOU Y Q , LIU L , WANG L , et al . Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching [J ] . Digital Communications and Networks , 2020 , 6 ( 3 ): 253 - 260 .
TANG S J , YU Y , WANG H , et al . A survey on scheduling techniques in computing and network convergence [J ] . IEEE Communications Surveys & Tutorials , 2024 , 26 ( 1 ): 160 - 195 .
TANG X Y , CAO C , WANG Y X , et al . Computing power network: the architecture of convergence of computing and networking towards 6G requirement [J ] . China Communications , 2021 , 18 ( 2 ): 175 - 185 .
贾庆民 , 丁瑞 , 刘辉 , 等 . 算力网络研究进展综述 [J ] . 网络与信息安全学报 , 2021 , 7 ( 5 ): 1 - 12 .
JIA Q M , DING R , LIU H , et al . Survey on research progress for compute first networking [J ] . Chinese Journal of Network and Information Security , 2021 , 7 ( 5 ): 1 - 12 .
LEI B , ZHAO Q Y , MEI J . Computing power network: an interworking architecture of computing and network based on IP extension [C ] // Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR) . Piscataway : IEEE Press , 2021 : 1 - 6 .
LI M X , CHANG C , TANG X Y , et al . Research on edge resource scheduling solutions for computing power network [J ] . Frontiers of Data and Computing , 2020 , 2 ( 4 ): 80 - 91 .
WANG X F , HAN Y W , LEUNG V C M , et al . Convergence of edge computing and deep learning: a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 2 ): 869 - 904 .
贾庆民 , 郭凯 , 周晓茂 , 等 . 新型算力网络架构设计与探讨 [J ] . 信息通信技术与政策 , 2022 ( 11 ): 18 - 23 .
JIA Q M , GUO K , ZHOU X M , et al . Design and discussion for new computing power network architecture [J ] . Information and Communications Technology and Policy , 2022 ( 11 ): 18 - 23 .
TM Forum . TM Forum自治网络白皮书:赋能电信行业的数字化转型 [R ] . 2019 .
TM Forum . White paper of autonomous networks: empowering digital transformation for the telecoms industry [R ] . 2019 .
周晓茂 , 贾庆民 , 胡玉姣 , 等 . 自智算力网络: 架构、技术与展望 [J ] . 物联网学报 , 2023 , 7 ( 4 ): 1 - 12 .
ZHOU X M , JIA Q M , HU Y J , et al . Autonomous computing and network convergence: architecture, technologies, and prospects [J ] . Chinese Journal on Internet of Things , 2023 , 7 ( 4 ): 1 - 12 .
HAN X Y , ZHAO Y H , YU K , et al . Utility-optimized resource allocation in computing-aware networks [C ] // Proceedings of the 2021 13th International Conference on Communication Software and Networks (ICCSN) . Piscataway : IEEE Press , 2021 : 199 - 205 .
XIE Y P , HUANG X Y , LI J C , et al . Computing power network: multi-objective optimization-based routing [J ] . Sensors , 2023 , 23 ( 15 ): 6702 .
GONG X , BAI C , REN S , et al . A survey of compute first networking [C ] // Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT) . Piscataway : IEEE Press , 2023 : 688 - 695 .
中国联通 . 中国联通算力网络白皮书 [R ] . 2019 .
China Unicom . White paper on computing power network of China Unicom [R ] . 2019 .
IMT-2030(6G) . 6G网络架构愿景与关键技术展望白皮书 [R ] . 2021 .
IMT-2030(6G) . 6G network architecture vision and key technology prospects white paper [R ] . 2021 .
YOUSAFZAI A , YAQOOB I , IMRAN M , et al . Process migration-based computational offloading framework for IoT-supported mobile edge/cloud computing [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 5 ): 4171 - 4182 .
CHEN X Y , XU C Q , WANG M , et al . Augmented queue-based transmission and transcoding optimization for livecast services based on cloud-edge-crowd integration [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 11 ): 4470 - 4484 .
KRÓL M , MASTORAKIS S , ORAN D , et al . Compute first networking: distributed computing meets ICN [C ] // Proceedings of the 6th ACM Conference on Information-Centric Networking . New York : ACM Press , 2019 : 67 - 77 .
ALAMOUTI S M , ARJOMANDI F , BURGER M . Hybrid edge cloud: a pragmatic approach for decentralized cloud computing [J ] . IEEE Communications Magazine , 2022 , 60 ( 9 ): 16 - 29 .
HUANG Y D , WANG S , HUANG T , et al . Cycle-based time-sensitive and deterministic networks: architecture, challenges, and open issues [J ] . IEEE Communications Magazine , 2022 , 60 ( 6 ): 81 - 87 .
WANG P , SUN W , ZHANG H B , et al . Distributed and secure federated learning for wireless computing power networks [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 7 ): 9381 - 9393 .
LU Y L , AI B , ZHONG Z D , et al . Energy-efficient task transfer in wireless computing power networks [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 11 ): 9353 - 9365 .
PAN J P , CAI L , YAN S , et al . Network for AI and AI for network: challenges and opportunities for learning-oriented networks [J ] . IEEE Network , 2021 , 35 ( 6 ): 270 - 277 .
SONG L , HU X , ZHANG G H , et al . Networking systems of AI: on the convergence of computing and communications [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 20 ): 20352 - 20381 .
ZHANG T Z , QIU H , MELLIA M , et al . Interpreting AI for networking: where we are and where we are going [J ] . IEEE Communications Magazine , 2022 , 60 ( 2 ): 25 - 31 .
LETAIEF K B , CHEN W , SHI Y M , et al . The roadmap to 6G: AI empowered wireless networks [J ] . IEEE Communications Magazine , 2019 , 57 ( 8 ): 84 - 90 .
TM Forum . 自智网络白皮书:助力数字化转型——从2/3级向4级发展 [R ] . 2023 .
TM Forum . Autonomous networks white paper: empowering digital transformation - evolving from level 2/3 towards level 4 . 2023 .
GUPTA V , DE S . SBL-based adaptive sensing framework for WSN-assisted IoT applications [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 6 ): 4598 - 4612 .
CHEN W X , XU H W , LI Z Y , et al . Unsupervised anomaly detection for intricate KPIs via adversarial training of VAE [C ] // Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2019 : 1891 - 1899 .
WANG Y T , YAN M , FENG G , et al . Autonomous on-demand deployment for UAV assisted wireless networks [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 12 ): 9488 - 9501 .
SALHAB N , LANGAR R , RAHIM R , et al . Autonomous network slicing prototype using machine-learning-based forecasting for radio resources [J ] . IEEE Communications Magazine , 2021 , 59 ( 6 ): 73 - 79 .
GUO S Y , DAI Y , XU S Y , et al . Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 7 ): 6010 - 6022 .
LI Y C , LI J X . MultiClassifier: a combination of DPI and ML for application-layer classification in SDN [C ] // Proceedings of the 2014 2nd International Conference on Systems and Informatics (ICSAI 2014) . Piscataway : IEEE Press , 2014 : 682 - 686 .
XIE J F , YU F R , HUANG T , et al . A survey of machine learning techniques applied to software defined networking (SDN): research issues and challenges [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 1 ): 393 - 430 .
ZHANG L M , ZHANG H , TANG Q , et al . LNTP: an end-to-end online prediction model for network traffic [J ] . IEEE Network , 2021 , 35 ( 1 ): 226 - 233 .
QI J Z , ZHAO Z W , TANIN E , et al . A graph and attentive multi-path convolutional network for traffic prediction [J ] . IEEE Transactions on Knowledge and Data Engineering , 2023 , 35 ( 7 ): 6548 - 6560 .
YAO H P , MAI T L , JIANG C X , et al . AI routers & network mind: a hybrid machine learning paradigm for packet routing [J ] . IEEE Computational Intelligence Magazine , 2019 , 14 ( 4 ): 21 - 30 .
LUONG N C , HOANG D T , GONG S M , et al . Applications of deep reinforcement learning in communications and networking: a survey [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 4 ): 3133 - 3174 .
LIN Y D , GERLA M . Induction and deduction for autonomous networks [J ] . IEEE Journal on Selected Areas in Communications , 1993 , 11 ( 9 ): 1415 - 1425 .
BAI Y , ZHAO H , ZHANG X , et al . Toward autonomous multi-UAV wireless network: a survey of reinforcement learning-based approaches [J ] . IEEE Communications Surveys & Tutorials , 2023 , 25 ( 4 ): 3038 - 3067 .
YOU L L , HE J S , WANG W , et al . Autonomous transportation systems and services enabled by the next-generation network [J ] . IEEE Network , 2022 , 36 ( 3 ): 66 - 72 .
GHOSH S , MANDAL A K , DE S , et al . Light-weight ML aided autonomous IoT networks [J ] . IEEE Communications Magazine , 2023 , 61 ( 6 ): 51 - 57 .
CLARK D D , PARTRIDGE C , RAMMING J C , et al . A knowledge plane for the Internet [C ] // Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications . New York : ACM Press , 2003 : 3 - 10 .
MESTRES A , RODRIGUEZ-NATAL A , CARNER J , et al . Knowledge-defined networking [J ] . ACM SIGCOMM Computer Communication Review , 2017 , 47 ( 3 ): 2 - 10 .
LEIVADEAS A , FALKNER M . A survey on intent-based networking [J ] . IEEE Communications Surveys & Tutorials , 2023 , 25 ( 1 ): 625 - 655 .
郭令奇 , 褚智贤 , 廖建新 , 等 . 意图驱动的自智网络资源按需服务 [J ] . 北京邮电大学学报 , 2022 , 45 ( 6 ): 82 - 88 .
GUO L Q , CHU Z X , LIAO J X , et al . Intent-driven demand-aware resource service in autonomous networks [J ] . Journal of Beijing University of Posts and Telecommunications , 2022 , 45 ( 6 ): 82 - 88 .
中国移动 . 算力网络白皮书 [R ] . 2021 .
China Mobile . Computing force network white paper [R ] . 2021 .
HU Y , JIA Q , SUN Q , et al . Intelligent converged computing network and its functional architecture [J ] . Computer Science , 2022 , 49 ( 9 ): 249 - 259 .
SUN W F , DUAN X Y , SHU M , et al . Research on 6G intelligent network architecture and key technologies for intelligent generation and autonomy [C ] // Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops) . Piscataway : IEEE Press , 2023 : 1 - 6 .
中国移动 . 算网大脑白皮书 [R ] . 2022 .
China Mobile . Computing network brain white paper [R ] . 2022 .
ZHAO Y , WEN P C , BAI L T , et al . Service-oriented intelligent OODA loop [C ] // Proceedings of the 2023 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter) . Piscataway : IEEE Press , 2023 : 182 - 187 .
SUN Y K , LEI B , JUNIIN L , et al . Computing power network: a survey [J ] . China Communications , 2024 , PP( 99 ): 1 - 37 .
MCMAHON F H . The livermore fortran kernels: a computer test of the numerical performance range [R ] . 1986 .
LI Y , TANG Q , PENG K , et al . Research on measurement and modeling of service-centric computing power network [J ] . Information and Communications Technology and Policy , 2023 , 49 ( 5 ): 21 - 29 .
DEGILA J R , SANSO B . A survey of topologies and performance measures for large-scale networks [J ] . IEEE Communications Surveys & Tutorials , 2004 , 6 ( 4 ): 18 - 31 .
CHEN J , WANG Y L . An adaptive short-term prediction algorithm for resource demands in cloud computing [J ] . IEEE Access , 2020 , 8 : 53915 - 53930 .
中国移动 . 算力网络技术白皮书 [R ] . 2022 .
China Mobile . White paper on computing power network technology [R ] . 2022 .
VARYANI N , ZHANG Z L , DAI D . QROUTE: an efficient quality of service (QoS) routing scheme for software-defined overlay networks [J ] . IEEE Access , 2020 , 8 : 104109 - 104126 .
TAGHIZADEH S , ELBIAZE H , BOBARSHAD H . EM-RPL: enhanced RPL for multigateway Internet-of-things environments [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 10 ): 8474 - 8487 .
RODRIGUEZ-NATAL A , PAILLISSE J , CORAS F , et al . Programmable overlays via open overlay router [J ] . IEEE Communications Magazine , 2017 , 55 ( 6 ): 32 - 38 .
YANG H L , ALPHONES A , XIONG Z H , et al . Artificial-intelligence-enabled intelligent 6G networks [J ] . IEEE Network , 2020 , 34 ( 6 ): 272 - 280 .
MUDDINAGIRI R , AMBAVANE S , BAYAS S . Self-hosted Kubernetes: deploying docker containers locally with minikube [C ] // Proceedings of the 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET) . Piscataway : IEEE Press , 2019 : 239 - 243 .
YANG H L , XIE X Z , KADOCH M . Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 5 ): 4157 - 4169 .
ZHANG H K , QUAN W . Networking automation and intelligence: a new era of network innovation [J ] . Engineering , 2022 , 17 : 13 - 16 .
TM Forum IG1218. Autonomous networks business requirements and framework v2.2.0 [R ] . 2022 .
CERQUITELLI T , MEO M , CURADO M , et al . Machine learning empowered computer networks [J ] . Computer Networks , 2023 , 230 : 109807 .
OTTER D , MEDINA J , KALITA J . A survey of the usages of deep learning for natural language processing [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2020 , 32 ( 2 ): 604 - 624 .
HOGAN A , BLOMQVIST E , COCHEZ M , et al . Knowledge graphs [J ] . ACM Computing Surveys , 2022 , 54 ( 4 ): 1 - 37 .
ZHOU Z J , HU G Y , HU C H , et al . A survey of belief rule-base expert system [J ] . IEEE Transactions on Systems, Man, and Cybernetics: Systems , 2021 , 51 ( 8 ): 4944 - 4958 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [J ] . Advances in Neural Information Processing Systems , 2017 , 30 : 5998 - 6008 .
亚信科技 , 清华大学智能产业研究院 . AIGC(GPT-4)赋能通信行业应用白皮书 [R ] . 2023 .
AsiaInfo Technologies , Tsinghua University Intelligent Industries Research Institute . a White paper of AlGC (GPT-4) empowering telecom sector [R ] . 2023 .
VAN d V G M , TUYTELAARS T , TOLIAS A S . Three types of incremental learning [J ] . Nature Machine Intelligence , 2022 , 4 ( 12 ): 1185 - 1197 .
HUANG L , YU W J , MA W T , et al . A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions [J ] . arXiv Preprint , arXiv: 2311.05232 , 2023 .
WANG Z D , JIANG Y F , LU Y D , et al . In-context learning unlocked for diffusion models [J ] . arXiv Preprint , arXiv: 2305.01115 , 2023 .
GUAN Y C , ZHAO L , HU J , et al . Softwarized industrial deterministic networking based on unmanned aerial vehicles [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 8 ): 5635 - 5644 .
IETF . Deterministic networking use cases:RFC 8578 [R ] . 2019 .
FINN N . Introduction to time-sensitive networking [J ] . IEEE Communications Standards Magazine , 2018 , 2 ( 2 ): 22 - 28 .
贾庆民 , 胡玉姣 , 张华宇 , 等 . 确定性算力网络研究 [J ] . 通信学报 , 2022 , 43 ( 10 ): 55 - 64 .
JIA Q M , HU Y J , ZHANG H Y , et al . Research on deterministic computing power network [J ] . Journal on Communications , 2022 , 43 ( 10 ): 55 - 64 .
黄韬 , 汪硕 , 黄玉栋 , 等 . 确定性网络研究综述 [J ] . 通信学报 , 2019 , 40 ( 6 ): 160 - 176 .
HUANG T , WANG S , HUANG Y D , et al . Survey of the deterministic network [J ] . Journal on Communications , 2019 , 40 ( 6 ): 160 - 176 .
第五届未来网络发展大会组委会 . 未来网络白皮书——确定性网络技术体系白皮书(2021版) [R ] . 2021 .
The Organizing Committee of the Fifth Future Network Development Conference . White paper on future networks - white paper on deterministic network technology system (2021 Edition) [R ] . 2021 .
Optical Internetworking Forum . Flex Ethernet lmplementation agreement OIF-FLEXE-01.0 [R ] . 2016 .
FARKAS J , BELLO L L , GUNTHER C . Time-sensitive networking standards [J ] . IEEE Communications Standards Magazine , 2018 , 2 ( 2 ): 20 - 21 .
YANG X , SCHOLZ D , HELM M . Deterministic networking (DetNet) vs time sensitive networking (TSN) [R ] . 2019 .
KROLIKOWSKI J , MARTIN S , MEDAGLIANI P , et al . Joint routing and scheduling for large-scale deterministic IP networks [J ] . Computer Communications , 2021 , 165 : 33 - 42 .
VENTRE P L , SALSANO S , POLVERINI M , et al . Segment routing: a comprehensive survey of research activities, standardization efforts, and implementation results [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 182 - 221 .
ABDULLAH Z N , AHMAD I , HUSSAIN I . Segment routing in software defined networks: a survey [J ] . IEEE Communications Surveys & Tutorials , 2018 , 21 ( 1 ): 464 - 486 . .
IEEE . IEEE standard for local and metropolitan area networks-bridges and bridged networks-amendment: IEEE 802.1Qbv [S ] . 2015 .
BENZEKKI K , EL FERGOUGUI A , ELBELRHITI ELALAOUI A . Software-defined networking (SDN): a survey [J ] . Security and Communication Networks , 2016 , 9 ( 18 ): 5803 - 5833 .
BOUILLARD A , BOYER M , CORRONC E . Deterministic network calculus: from theory to practical implementation [M ] . Hoboken : John Wiley & Sons , 2018 .
HENKE C , SIDDIQUI A , KHONDOKER R . Network functional composition: state of the art [C ] // Proceedings of the 2010 Australasian Telecommunication Networks and Applications Conference . Piscataway : IEEE Press , 2010 : 43 - 48 .
CHENG G Z , CHEN H C , CHEN S Q , et al . How to make network nodes adaptive? [J ] . IEEE Communications Letters , 2014 , 18 ( 3 ): 515 - 518 .
CHENG G Z , CHEN H C , WANG Z M , et al . Towards adaptive network nodes via service chain construction [J ] . IEEE Transactions on Network and Service Management , 2015 , 12 ( 2 ): 248 - 262 .
段通 , 兰巨龙 , 程国振 , 等 . 基于元能力的SDN功能组合机制 [J ] . 通信学报 , 2015 , 36 ( 5 ): 160 - 170 .
DUAN T , LAN J L , CHENG G Z , et al . Functional composition in software-defined network based on atomic capacity [J ] . Journal on Communications , 2015 , 36 ( 5 ): 160 - 170 .
LU W , LIANG L P , KONG B X , et al . AI-assisted knowledge-defined network orchestration for energy-efficient data center networks [J ] . IEEE Communications Magazine , 2020 , 58 ( 1 ): 86 - 92 .
WANG D , ZHANG S H , SU R R , et al . An intent-based network empowered by knowledge graph: enhancement of intent translation and management function for vertical industry [C ] // Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops) . Piscataway : IEEE Press , 2023 : 1 - 6 .
CHANG X T , YANG C G , WANG H , et al . KID: knowledge graph-enabled intent-driven network with digital twin [C ] // Proceedings of the 2022 27th Asia Pacific Conference on Communications (APCC) . Piscataway : IEEE Press , 2022 : 272 - 277 .
北京邮电大学 . 知识定义的意图网络白皮书 [R ] . 2022 .
Beijing University of Posts and Telecommunications . White paper on knowledge-defined intention networks [R ] . 2022 .
TAN L Z , SU W , ZHANG W , et al . In-band network telemetry: a survey [J ] . Computer Networks , 2021 , 186 : 107763 .
0
浏览量
80
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构