浏览全部资源
扫码关注微信
桂林电子科技大学广西无线宽带通信与信号处理重点实验室,广西 桂林 541004
[ "叶苗(1977- ),男,广西桂林人,博士,桂林电子科技大学教授、博士生导师,主要研究方向为边缘存储与云存储、软件定义网络、无线传感器网络、模式识别与机器学习。" ]
[ "程锦(1999- ),女,安徽六安人,桂林电子科技大学博士生,主要研究方向为无线传感器网络、人工智能。" ]
[ "黄源(1977- ),男,广西桂林人,桂林电子科技大学讲师,主要研究方向为智能机器人控制、智能信息处理。" ]
[ "蒋秋香(1978- ),女,广西桂林人,桂林电子科技大学工程师,主要研究方向为无线传感器网络、人工智能、网络安全。" ]
[ "王勇(1964- ),男,四川成都人,博士,桂林电子科技大学教授、博士生导师,主要研究方向为云计算、网络流量分析、信息安全。" ]
收稿日期:2024-04-10,
修回日期:2024-08-20,
纸质出版日期:2024-09-25
移动端阅览
叶苗,程锦,黄源等.面向WSN异常节点检测的融合重构机制与对比学习方法[J].通信学报,2024,45(09):153-169.
YE Miao,CHENG Jin,HUANG Yuan,et al.Fusion reconstruction mechanism and contrast learning method for WSN abnormal node detection[J].Journal on Communications,2024,45(09):153-169.
叶苗,程锦,黄源等.面向WSN异常节点检测的融合重构机制与对比学习方法[J].通信学报,2024,45(09):153-169. DOI: 10.11959/j.issn.1000-436x.2024167.
YE Miao,CHENG Jin,HUANG Yuan,et al.Fusion reconstruction mechanism and contrast learning method for WSN abnormal node detection[J].Journal on Communications,2024,45(09):153-169. DOI: 10.11959/j.issn.1000-436x.2024167.
针对无线传感器网络(WSN)异常检测中的自监督学习异常检测方法需要解决负例样本信息表示单一缺乏多样性和提取WSN节点采集到的多模态数据时空特征不够充分影响异常检测性能的问题。对此提出了一种结合对比学习和重构机制的无线传感器网络异常节点检测方法。首先,通过设计一种对比学习策略为重构机制模型提供足够充足的正负例样本,并结合生成对抗网络(GAN)生成具有多样性特性的负例样本;其次,设计了一种基于多头注意力机制和图神经网络的双层时空特征提取模块。通过在实际公开数据集上的系列对比实验及其实验结果表明,所提方法相比于传统异常检查方法和最近的图神经网络方法具有更好的精确率和召回率。
To tackle the defects of self-supervised learning anomaly detection methods for wireless sensor network (WSN) need to address the problems of single negative sample types and lack of diversity
as well as insufficient extraction of spatiotemporal features from multimodal data of wireless sensor network nodes. To address these challenges
a wireless sensor network anomaly node detection method that combines contrastive learning and reconstruction mechanisms was proposed. Firstly
this method provided sufficient positive and negative example information representation for the reconstruction model by using contrastive learning methods
and combined with generative adversarial network (GAN) to generate negative examples with diverse characteristics. Secondly
a dual layer spatiotemporal feature extraction module based on multi-head attention and graph neural network was designed. Through a series of comparative experiments on actual public datasets and their experimental results
it is shown that the method designed has better accuracy and recall compared to traditional anomaly detection methods and recent graph neural network methods.
GULATI K , BODDU R S K , KAPILA D , et al . A review paper on wireless sensor network techniques in Internet of things (IoT) [J ] . Materials Today: Proceedings , 2022 , 51 : 161 - 165 .
王天荆 , 李秀琴 , 白光伟 , 等 . 无线传感器网络中基于自适应网格的多目标定位算法 [J ] . 通信学报 , 2019 , 40 ( 7 ): 197 - 207 .
WANG T J , LI X Q , BAI G W , et al . Multi-target localization algorithm based on adaptive grid in wireless sensor network [J ] . Journal on Communications , 2019 , 40 ( 7 ): 197 - 207 .
O’REILLY C , GLUHAK A , IMRAN M A , et al . Anomaly detection in wireless sensor networks in a non-stationary environment [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 3 ): 1413 - 1432 .
DANG T B , LE D T , NGUYEN T D , et al . Monotone split and conquer for anomaly detection in IoT sensory data [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 20 ): 15468 - 15485 .
黄美根 , 黄一才 , 郁滨 , 等 . 软件定义无线传感器网络研究综述 [J ] . 软件学报 , 2018 , 29 ( 9 ): 2733 - 2752 .
HUANG M G , HUANG Y C , YU B , et al . Software-defined wireless sensor networks: a research survey [J ] . Journal of Software , 2018 , 29 ( 9 ): 2733 - 2752 .
YANG F , SHU L , YANG Y L , et al . Optimal deployment of solar insecticidal lamps over constrained locations in mixed-crop farmlands [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 16 ): 13095 - 13114 .
GAO C , YANG P , CHEN Y P , et al . An edge-cloud collaboration architecture for pattern anomaly detection of time series in wireless sensor networks [J ] . Complex & Intelligent Systems , 2021 , 7 ( 5 ): 2453 - 2468 .
何炎祥 , 孙发军 , 李清安 , 等 . 无线传感器网络中公钥机制研究综述 [J ] . 计算机学报 , 2020 , 43 ( 3 ): 381 - 408 .
HE Y X , SUN F J , LI Q A , et al . A survey on public key mechanism in wireless sensor networks [J ] . Chinese Journal of Computers , 2020 , 43 ( 3 ): 381 - 408 .
BOUBICHE D E , ATHMANI S , BOUBICHE S , et al . Cybersecurity issues in wireless sensor networks: current challenges and solutions [J ] . Wireless Personal Communications , 2021 , 117 ( 1 ): 177 - 213 .
ZHANG H N , XING S P , WANG J N . Security and application of wireless sensor network [J ] . Procedia Computer Science , 2021 , 183 : 486 - 492 .
CHARALAMPIDOU M , PAVLIDIS G , MOUROUTSOS S G . Sensor analysis and selection for open space WSN security applications [J ] . Majlesi Journal of Electrical Engineering , 2019 , 13 ( 1 ): 95 - 108 .
黄训华 , 张凤斌 , 樊好义 , 等 . 基于多模态对抗学习的无监督时间序列异常检测 [J ] . 计算机研究与发展 , 2021 , 58 ( 8 ): 1655 - 1667 .
HUANG X H , ZHANG F B , FAN H Y , et al . Multimodal adversarial learning based unsupervised time series anomaly detection [J ] . Journal of Computer Research and Development , 2021 , 58 ( 8 ): 1655 - 1667 .
VURAN M C , AKAN Ö B , AKYILDIZ I F . Spatio-temporal correlation: theory and applications for wireless sensor networks [J ] . Computer Networks , 2004 , 45 ( 3 ): 245 - 259 .
费欢 , 肖甫 , 李光辉 , 等 . 基于多模态数据流的无线传感器网络异常检测方法 [J ] . 计算机学报 , 2017 , 40 ( 8 ): 1829 - 1842 .
FEI H , XIAO F , LI G H , et al . An anomaly detection method of wireless sensor network based on multi-modals data stream [J ] . Chinese Journal of Computers , 2017 , 40 ( 8 ): 1829 - 1842 .
IFZARNE S , TABBAA H , HAFIDI I , et al . Anomaly detection using machine learning techniques in wireless sensor networks [J ] . Journal of Physics: Conference Series , 2021 , 1743 ( 1 ): 012021 .
LAI K H , ZHA D C , XU J J , et al . Revisiting time series outlier detection: definitions and benchmarks [C ] // Neural Information Processing Systems . Massachusetts : MIT Press , 2021 : 1 - 8 .
YOGITA , PAL V . Data variance-based distributed outlier detection in wireless sensor networks [C ] // Proceedings of First International Conference on Computational Electronics for Wireless Communications . Piscataway : IEEE Press , 2022 : 465 - 475 .
SAMPARTHI V S K , VERMA H K . Outlier detection of data in wireless sensor networks using kernel density estimation [J ] . International Journal of Computer Applications , 2010 , 5 ( 6 ): 28 - 32 .
WANG L R , LI J B , BHATTI U A , et al . Anomaly detection in wireless sensor networks based on KNN [C ] // Proceedings of the Artificial Intelligence and Security . Piscataway : IEEE Press , 2019 : 632 - 643 .
WAZID M , DAS A K . An efficient hybrid anomaly detection scheme using K-means clustering for wireless sensor networks [J ] . Wireless Personal Communications , 2016 , 90 ( 4 ): 1971 - 2000 .
SARANGI B , MAHAPATRO A , TRIPATHY B . Outlier detection using convolutional neural network for wireless sensor network [J ] . International Journal of Business Data Communications and Networking , 2021 , 17 ( 2 ): 1 - 16 .
LAZAR V , BUZURA S , IANCU B , et al . Anomaly detection in software defined wireless sensor networks using recurrent neural networks [C ] // Proceedings of the 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP) . Piscataway : IEEE Press , 2021 : 19 - 24 .
MATAR M , XIA T , HUGUENARD K , et al . Multi-head attention based Bi-LSTM for anomaly detection in multivariate time-series of WSN [C ] // Proceedings of the 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS) . Piscataway : IEEE Press , 2023 : 1 - 5 .
HUANG B , WANG X H , CUI P , et al . One-class temporal graph attention neural network for dynamic graph anomaly detection [C ] // Proceedings of the 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT) . Piscataway : IEEE Press , 2021 : 783 - 790 .
POORNIMA I G A , PARAMASIVAN B . Anomaly detection in wireless sensor network using machine learning algorithm [J ] . Computer Communications , 2020 , 151 : 331 - 337 .
LUO T , NAGARAJAN S G . Distributed anomaly detection using autoencoder neural networks in WSN for IoT [C ] // Proceedings of the 2018 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2018 : 1 - 6 .
LUO X X , WU J , YANG J , et al . Deep graph level anomaly detection with contrastive learning [J ] . Scientific Reports , 2022 , 12 ( 1 ): 19867 .
ZHENG Y , JIN M , LIU Y X , et al . Generative and contrastive self-supervised learning for graph anomaly detection [J ] . IEEE Transactions on Knowledge and Data Engineering , 2023 , 35 ( 12 ): 12220 - 12233 .
VELIČKOVIĆ P , FEDUS W , HAMILTON W L , et al . Deep graph infomax [J ] . arXiv Preprint , arXiv: 1809.10341 , 2018 .
LIU Y X , LI Z , PAN S R , et al . Anomaly detection on attributed networks via contrastive self-supervised learning [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2022 , 33 ( 6 ): 2378 - 2392 .
段雪源 , 付钰 , 王坤 , 等 . 基于多尺度特征的网络流量异常检测方法 [J ] . 通信学报 , 2022 , 43 ( 10 ): 65 - 76 .
DUAN X Y , FU Y , WANG K , et al . Network traffic anomaly detection method based on multi-scale characteristic [J ] . Journal on Communications , 2022 , 43 ( 10 ): 65 - 76 .
蒋俊正 , 杨杰 , 欧阳缮 . 一种新的无线传感器网络中异常节点检测定位算法 [J ] . 电子与信息学报 , 2018 , 40 ( 10 ): 2358 - 2364 .
JIANG J Z , YANG J , OUYANG S . Novel method for outlier nodes detection and localization in wireless sensor networks [J ] . Journal of Electronics & Information Technology , 2018 , 40 ( 10 ): 2358 - 2364 .
DING K Z , LI J D , AGARWAL N , et al . Inductive anomaly detection on attributed networks [C ] // Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence . California : International Joint Conferences on Artificial Intelligence Organization , 2020 : 1288 - 1294 .
陈波冯 , 李靖东 , 卢兴见 , 等 . 基于深度学习的图异常检测技术综述 [J ] . 计算机研究与发展 , 2021 , 58 ( 7 ): 1436 - 1455 .
CHEN B F , LI J D , LU X J , et al . Survey of deep learning based graph anomaly detection methods [J ] . Journal of Computer Research and Development , 2021 , 58 ( 7 ): 1436 - 1455 .
SALMI S , OUGHDIR L . CNN-LSTM based approach for dos attacks detection in wireless sensor networks [J ] . International Journal of Advanced Computer Science and Applications , 2022 , 13 ( 4 ): 1 - 8 .
AUDIBERT J , MICHIARDI P , GUYARD F , et al . USAD: UnSupervised anomaly detection on multivariate time series [C ] // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York : ACM Press , 2020 : 3395 - 3404 .
LI Z L , YU J , ZHANG G W , et al . Dynamic spatio-temporal graph network with adaptive propagation mechanism for multivariate time series forecasting [J ] . Expert Systems with Applications , 2023 , 216 : 119374 .
LUO X X , WU J , BEHESHTI A , et al . ComGA: community-aware attributed graph anomaly detection [C ] // Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining . New York : ACM Press , 2022 : 657 - 665 .
严莉 , 张凯 , 徐浩 , 等 . 基于图注意力机制和Transformer的异常检测 [J ] . 电子学报 , 2022 , 50 ( 4 ): 900 - 908 .
YAN L , ZHANG K , XU H , et al . Abnormal detection based on graph attention mechanisms and transformer [J ] . Acta Electronica Sinica , 2022 , 50 ( 4 ): 900 - 908 .
ZHENG L , LI Z P , LI J , et al . AddGraph: anomaly detection in dynamic graph using attention-based temporal GCN [C ] // Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence . California : International Joint Conferences on Artificial Intelligence Organization , 2019 : 4419 - 4425 .
ZHANG Q H , YE M , QIU H B , et al . A novel anomaly detection method for multimodal WSN data flow via a dynamic graph neural network [J ] . arXiv Preprint , arXiv: 2202.10454 , 2022 .
YE M , ZHANG Q H , XUE X S , et al . A novel self-supervised learning-based anomalous node detection method based on an autoencoder for wireless sensor networks [J ] . IEEE Systems Journal , 2024 , 18 ( 1 ): 256 - 267 .
DENG A , HOOI B . Graph neural network-based anomaly detection in multivariate time series [J ] . arXiv Preprint , arXiv: 2106.06947 , 2021 .
AZIM E , WANG D J , FU Y J . Deep graph stream SVDD: anomaly detection in cyber-physical systems [M ] . Berlin : Springer , 2023 .
CHEN Z K , CHEN D S , ZHANG X , et al . Learning graph structures with transformer for multivariate time-series anomaly detection in IoT [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 12 ): 9179 - 9189 .
DING C Y , SUN S L , ZHAO J . MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection [J ] . Information Fusion , 2023 , 89 : 527 - 536 .
JOTHI S A , VENKATESAN R , SANTHI V . Rule-based outlier detection with a modified variational autoencoder for enhancing data accuracy in wireless sensor networks [J ] . International Journal of Fuzzy Systems , 2023 , 25 ( 6 ): 2187 - 2202 .
ZHANG C X , SONG D J , CHEN Y C , et al . A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2019 , 33 ( 1 ): 1409 - 1416 .
FENG D , WU Z C , ZHANG J , et al . Dynamic global-local spatial-temporal network for traffic speed prediction [J ] . IEEE Access , 2020 , 8 : 209296 - 209307 .
THILL M , KONEN W , WANG H , et al . Temporal convolutional autoencoder for unsupervised anomaly detection in time series [J ] . Applied Soft Computing , 2021 , 112 : 107751 .
郭嘉琰 , 李荣华 , 张岩 , 等 . 基于图神经网络的动态网络异常检测算法 [J ] . 软件学报 , 2020 , 31 ( 3 ): 748 - 762 .
GUO J Y , LI R H , ZHANG Y , et al . Graph neural network based anomaly detection in dynamic networks [J ] . Journal of Software , 2020 , 31 ( 3 ): 748 - 762 .
PARK C , KIM D , HAN J W , et al . Unsupervised attributed multiplex network embedding [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 4 ): 5371 - 5378 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 770 - 778 .
WAN R Z , MEI S P , WANG J , et al . Multivariate temporal convolutional network: a deep neural networks approach for multivariate time series forecasting [J ] . Electronics , 2019 , 8 ( 8 ): 876 .
HE Y D , ZHAO J B . Temporal convolutional networks for anomaly detection in time series [J ] . Journal of Physics: Conference Series , 2019 , 1213 ( 4 ): 042050 .
BLÁZQUEZ-GARCÍA A , CONDE A , MORI U , et al . A review on outlier/anomaly detection in time series data [J ] . ACM Computing Surveys , 2022 , 54 ( 3 ): 1 - 33 .
CARMONA C U , AUBET F X , FLUNKERT V , et al . Neural contextual anomaly detection for time series [J ] . arXiv Preprint , arXiv: 2107.07702 , 2021 .
AHMED M , MAHMOOD A N , HU J K . A survey of network anomaly detection techniques [J ] . Journal of Network and Computer Applications , 2016 , 60 : 19 - 31 .
DOHARE A K , TULIKA . A CNN and LSTM-based data prediction model for WSN [C ] // Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) . Piscataway : IEEE Press , 2021 : 1327 - 1330 .
ZHAO H , WANG Y J , DUAN J Y , et al . Multivariate time-series anomaly detection via graph attention network [C ] // Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM) . Piscataway : IEEE Press , 2020 : 841 - 850 .
0
浏览量
41
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构