浏览全部资源
扫码关注微信
西安电子科技大学空天地一体化综合业务网全国重点实验室,陕西 西安 710071
[ "李杰(2001- ),男,陕西铜川人,西安电子科技大学博士生,主要研究方向为卫星通信信号分析与处理。" ]
[ "李靖(1980- ),男,湖北荆州人,博士,西安电子科技大学教授,主要研究方向为宽带无线传输、人工智能与无线通信融合。" ]
[ "吕璐(1990- ),男,河北张家口人,博士,西安电子科技大学副教授,主要研究方向为物理层安全、通信感知一体化。" ]
[ "宫丰奎(1979- ),男,山东潍坊人,博士,西安电子科技大学教授,主要研究方向为新一代无线通信关键技术。" ]
收稿日期:2024-05-10,
修回日期:2024-08-17,
纸质出版日期:2024-09-25
移动端阅览
李杰,李靖,吕璐等.基于可微分架构搜索的多载波信号自动调制识别[J].通信学报,2024,45(09):14-25.
LI Jie,LI Jing,LYU Lu,et al.Differentiable architecture search-based automatic modulation recognition for multi-carrier signals[J].Journal on Communications,2024,45(09):14-25.
李杰,李靖,吕璐等.基于可微分架构搜索的多载波信号自动调制识别[J].通信学报,2024,45(09):14-25. DOI: 10.11959/j.issn.1000-436x.2024164.
LI Jie,LI Jing,LYU Lu,et al.Differentiable architecture search-based automatic modulation recognition for multi-carrier signals[J].Journal on Communications,2024,45(09):14-25. DOI: 10.11959/j.issn.1000-436x.2024164.
针对城市多径信道下缺乏多载波信号通用数据集,以及传统信号特征与网络模型难以有效识别低信噪比下失真信号调制类型的问题,提出一种基于可微分架构搜索的多载波信号自动调制识别算法。首先,产生了常见OFDM、FBMC与OTFS多载波信号经过典型城市多径信道的接收信号数据集,选取对调制参数不敏感的信号时频图作为特征向量来训练神经网络;其次,采用可微分架构搜索方法自动搜索最佳网络结构,避免了网络结构设计的反复验证工作;最后,在特征学习过程中引入联合注意力机制,将失真信号特征进行空间转换以降低多径干扰影响,同时计算特征图各通道信息权重并排序,以提升相关特征图通道的分类效果。仿真结果表明,所提算法不仅能提升在城市多径信道环境下尤其是低信噪比时的识别正确率,而且对调制参数变化和小样本场景具有更好的鲁棒性。
Considering the lack of a general multi-carrier signal dataset in urban multipath channels
and the challenge of recognizing the modulation types of distorted signals at low signal-to-noise ratio (SNR)
a differentiable architecture search-based (DARTS) automatic modulation recognition algorithm for multi-carrier signals was proposed. Firstly
the received signal datasets of commonly used multi-carrier signals
i.e.
orthogonal frequency division multiplexing
filter bank multi-carrier
and orthogonal time frequency space
were generated over typical urban multipath channels. The time-frequency images
which were insensitive to modulation parameters
were selected as feature vectors to train the neural network. Secondly
DARTS was employed to automatically search the optimal network architecture. Finally
a joint attention mechanism was introduced into the feature learning process. This mechanism spatially transforming distorted signal features to mitigate the impact of multipath interference
while also calculating and sorting the information weights for each channel of the feature maps to improve the recognition performance of the relevant feature map channels. Simulation results demonstrate that the proposed algorithm improves accuracy in urban multipath channels
especially at low SNR
while simultaneously providing better robustness to modulation parameter variations and small-sample scenarios.
DOAN V S , HUYNH-THE T , KIM D S . Underwater acoustic target classification based on dense convolutional neural network [J ] . IEEE Geoscience and Remote Sensing Letters , 2020 , 19 : 1 - 5 .
WANG C X , YOU X H , GAO X Q , et al . On the road to 6G: visions, requirements, key technologies, and testbeds [J ] . IEEE Communications Surveys & Tutorials , 2023 , 25 ( 2 ): 905 - 974 .
ELDEMERDASH Y A , DOBRE O A , ÖNER M . Signal identification for multiple-antenna wireless systems: achievements and challenges [J ] . IEEE Communications Surveys & Tutorials , 2016 , 18 ( 3 ): 1524 - 1551 .
LIU X Y , LI C J , JIN C T , et al . Wireless signal representation techniques for automatic modulation classification [J ] . IEEE Access , 2022 , 10 : 84166 - 84187 .
GAMAGE S , SAMARABANDU J . Deep learning methods in network intrusion detection: a survey and an objective comparison [J ] . Journal of Network and Computer Applications , 2020 , 169 ( 6 ): 102 - 107 .
KEBEDE T , WONDIE Y , STEINBRUNN J , et al . Multi-carrier waveforms and multiple access strategies in wireless networks: performance, applications, and challenges [J ] . IEEE Access , 2022 , 10 : 21120 - 21140 .
AN Z L , ZHANG T Q , XU Y Q , et al . Multimodality-aided multicarrier waveform recognition in low SNR regimes based on denoised cyclic autocorrelation transformation [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2023 , 59 ( 5 ): 5859 - 5875 .
戴江安 , 栾声扬 , 赵明龙 , 等 . 脉冲噪声下基于平滑循环相关熵谱的调制识别方法 [J ] . 通信学报 , 2021 , 42 ( 12 ): 121 - 133 .
DAI J A , LUAN S Y , ZHAO M L , et al . Pol-CCES based modulation recognition method under impulsive noise [J ] . Journal on Communications , 2021 , 42 ( 12 ): 121 - 133 .
ZERHOUNI K , AMHOUD E M , CHAFII M . Filtered multicarrier waveforms classification: a deep learning-based approach [J ] . IEEE Access , 2021 , 9 : 2169 - 3536 .
KUMAR A , MAJHI S , GUI G , et al . A survey of blind modulation classification techniques for OFDM signals [J ] . Sensors , 2022 , 22 ( 3 ): 1020 - 1051 .
安泽亮 , 张天骐 , 马宝泽 , 等 . 基于一维CNN的多入多出OSTBC信号协作调制识别 [J ] . 通信学报 , 2021 , 42 ( 7 ): 84 - 94 .
AN Z L , ZHANG T Q , MA B Z , et al . Cooperative modulation recognition based on one-dimensional convolutional neural network for MIMO-OSTBC signal [J ] . Journal on Communications , 2021 , 42 ( 7 ): 84 - 94 .
DUAN S R , CHEN K , YU X , et al . Automatic multicarrier waveform classification via PCA and convolutional neural networks [J ] . IEEE Access , 2018 , 6 : 51365 - 51373 .
XIAO W S , LUO Z Q , HU Q . A review of research on signal modulation recognition based on deep learning [J ] . Electronics , 2022 , 11 ( 17 ): 2764 - 2792 .
ZHANG F X , LUO C B , XU J L , et al . Deep learning based automatic modulation recognition: Models, datasets, and challenges [J ] . Digital Signal Processing , 2022 , 129 : 103650 - 103663 .
AZZOUZ E E , NANDI A K . Automatic identification of digital modulation types [J ] . Signal Processing , 1995 , 47 ( 1 ): 55 - 69 .
HUANG S , JIANG Y Z , GAO Y , et al . Automatic modulation classification using contrastive fully convolutional network [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 4 ): 1044 - 1047 .
AN Z L , ZHANG T Q , MA B Z , et al . Blind high-order modulation recognition for beyond 5G OSTBC-OFDM systems via projected constellation vector learning network [J ] . IEEE Communications Letters , 2022 , 26 ( 1 ): 84 - 88 .
ZOPH B , LE Q V . Neural architecture search with reinforcement learning [C ] // Proceedings of 2017 International Conference on Learning Representations . Vancouver : ICLR , 2017 : 1 - 16 .
LIU H , SIMONYAN K , YANG Y . DARTS: differentiable architecture search [C ] // Proceedings of 2018 International Conference on Learning Representations . Vancouver : ICLR , 2018 : 1 - 13 .
张睿 , 张鹏云 , 孙超利 . 基于多域融合及神经架构搜索的语音增强方法 [J ] . 通信学报 , 2024 , 45 ( 2 ): 225 - 239 .
ZHANG R , ZHANG P Y , SUN L C . Speech enhancement method based on multi-domain fusion and neural architecture search [J ] . Journal on Communications , 2024 , 45 ( 2 ): 225 - 239 .
XU Y H , XIE L X , ZHANG X P , et al . PC-DARTS: partial channel connections for memory-efficient architecture search [C ] // Proceedings of 2019 International Conference on Learning Representations . Vancouver : ICLR , 2019 : 1 - 13 .
O’SHEA T J , WEST N . Radio machine learning dataset generation with gnu radio [C ] // Proceedings of the GNU Radio Conference . Piscataway : IEEE Press , 2016 : 1 - 6 .
O’SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 168 - 179 .
YUAN W J , WEI Z Q , LI S Y , et al . Orthogonal time frequency space modulation: Part III: ISAC and potential applications [J ] . IEEE Communications Letters , 2023 , 27 ( 1 ): 14 - 18 .
HADANI R , RAKIB S , TSATSANIS M , et al . Orthogonal time frequency space modulation [C ] // Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2017 : 1 - 6 .
邢旺 , 唐晓刚 , 周一青 , 等 . 面向OTFS的时延-多普勒域信道估计方法综述 [J ] . 通信学报 , 2022 , 43 ( 12 ): 188 - 201 .
XING W , TANG X G , ZHOU Y Q , et al . Survey of channel estimation method in delay-Doppler domain for OTFS [J ] . Journal on Communications , 2022 , 43 ( 12 ): 188 - 201 .
LONGO G , BERNARD P . Time and frequency representation of signals and systems [M ] . Berlin : Springer , 1989 .
ZHANG X X , ZHAO H T , ZHU H B , et al . NAS-AMR: neural architecture search-based automatic modulation recognition for integrated sensing and communication systems [J ] . IEEE Transactions on Cognitive Communications and Networking , 2022 , 8 ( 3 ): 1374 - 1386 .
0
浏览量
66
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构