浏览全部资源
扫码关注微信
1.空军工程大学防空反导学院,陕西 西安 710051
2.复杂航空系统仿真重点实验室,北京 100076
[ "宋亚飞(1988- ),男,河南汝州人,博士,空军工程大学教授、博士生导师,主要研究方向为模式识别、智能信息处理、网络空间安全。" ]
[ "李乐民(1999- ),男,重庆人,空军工程大学硕士生,主要研究方向为智能信息处理、态势感知。" ]
[ "权文(1988- ),女,陕西蒲城人,博士,空军工程大学讲师,主要研究方向为机器学习及其在空管领航、目标识别等领域的应用。" ]
[ "倪鹏(1985- ),男,福建福州人,博士,复杂航空系统仿真重点实验室工程师,主要研究方向为作战建模与仿真。" ]
[ "王科(1999- ),男,重庆人,空军工程大学硕士生,主要研究方向为模式识别、态势感知。" ]
收稿日期:2024-05-09,
修回日期:2024-07-29,
纸质出版日期:2024-08-25
移动端阅览
宋亚飞,李乐民,权文等.时序数据图像化:战术意图识别及可移植框架[J].通信学报,2024,45(08):149-165.
SONG Yafei,LI Lemin,QUAN Wen,et al.Timing data visualization: tactical intent recognition and portable framework[J].Journal on Communications,2024,45(08):149-165.
宋亚飞,李乐民,权文等.时序数据图像化:战术意图识别及可移植框架[J].通信学报,2024,45(08):149-165. DOI: 10.11959/j.issn.1000-436x.2024154.
SONG Yafei,LI Lemin,QUAN Wen,et al.Timing data visualization: tactical intent recognition and portable framework[J].Journal on Communications,2024,45(08):149-165. DOI: 10.11959/j.issn.1000-436x.2024154.
通过将时序编码为图像,提出了一种结合曲线滤波技术和EfficientNetV2图像识别网络的鲁棒且可移植的战术意图识别框架。曲线滤波技术可以有效地减少大量时域特征、模型参数和训练时间的冗余,基于此,提出了一种改进的格拉姆角场方法将时序编码为图像,提高了卷积神经网络的特征提取能力。EfficientNetV2网络能够有效地处理意图图像,并成为预训练模型,使得在不同系统之间进行迁移学习成为可能。实验结果表明,所提框架相对于机器学习及深度学习等方法提高了0.99%以上的准确率,具有更好的性能、可扩展性、鲁棒性和可迁移性。
By transforming time series into images
a robust and transferable tactical intent recognition framework was proposed
which integrated curve filtering technology and the EfficientNetV2 image recognition network. Curve filtering technology effectively reduced redundancy in numerous time-domain features
model parameters
and training time
an enhanced Gramian angular field (GAF) method was proposed to encode time series into images
enhancing the feature extraction capabilities of convolutional neural networks. The EfficientNetV2 network was adept at processing intent images and could serve as a pre-trained model
facilitating transfer learning across different systems. Experimental results demonstrate that the proposed framework achieves over 0.99% higher accuracy compared to machine learning and deep learning methods
exhibiting superior performance
scalability
robustness
and transferability.
XIA J Y , CHEN M Q , FANG W G . Air combat intention recognition with incomplete information based on decision tree and GRU network [J ] . Entropy , 2023 , 25 ( 4 ): 671 .
李磊 , 韩洪伟 , 蒋琪 . 美决策中心战概念研究 [J ] . 战术导弹技术 , 2021 ( 1 ): 34 - 37, 120 .
LI L , HAN H W , JIANG Q . Analysis of the concept of U.S.Decision-centric warfare [J ] . Tactical Missile Technology , 2021 ( 1 ): 34 - 37, 120 .
ZHANG Z , WANG H F , GENG J , et al . An information fusion method based on deep learning and fuzzy discount-weighting for target intention recognition [J ] . Engineering Applications of Artificial Intelligence , 2022 , 109 : 104610 .
GENG J , DENG X Y , MA X R , et al . Transfer learning for SAR image classification via deep joint distribution adaptation networks [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2020 , 58 ( 8 ): 5377 - 5392 .
TENG F , GUO X P , SONG Y F , et al . An air target tactical intention recognition model based on bidirectional GRU with attention mechanism [J ] . IEEE Access , 2021 , 9 : 169122 - 169134 .
TAN B , LI Q N , ZHANG T L , et al . The research of air combat intention identification method based on BiLSTM + Attention [J ] . Electronics , 2023 , 12 ( 12 ): 2633 .
李颖 , 武君胜 , 李伟刚 , 等 . 一种识别作战意图的层次聚合模型 [J ] . 西北工业大学学报 , 2023 , 41 ( 2 ): 400 - 408 .
LI Y , WU J S , LI W G , et al . A hierarchical aggregation model for combat intention recognition [J ] . Journal of Northwestern Polytechnical University , 2023 , 41 ( 2 ): 400 - 408 .
TENG F , SONG Y F , GUO X P . Attention-TCN-BiGRU: an air target combat intention recognition model [J ] . Mathematics , 2021 , 9 ( 19 ): 2412 .
丁鹏 , 宋亚飞 . 代价敏感的空中目标意图识别方法 [J ] . 航空学报 , 2023 ( 24 ): 171 - 186 .
DING P , SONG Y F . Cost-sensitive airborne target intent recognition method [J ] . Journal of Aeronautics , 2023 ( 24 ): 171 - 186 .
周旺旺 , 姚佩阳 , 张杰勇 , 等 . 基于深度神经网络的空中目标作战意图识别 [J ] . 航空学报 , 2018 , 39 ( 11 ): 195 - 203 .
ZHOU W W , YAO P Y , ZHANG J Y , et al . Combat intention recognition for aerial targets based on deep neural network [J ] . Acta Aeronautica et Astronautica Sinica , 2018 , 39 ( 11 ): 195 - 203 .
TENG F , SONG Y F , WANG G , et al . A GRU-based method for predicting intention of aerial targets [J ] . Computational Intelligence and Neuroscience , 2021 ( 1 ): 1 - 13 .
SHIKALGAR M B , ARAGE C S . Fake news detection using hybrid BiLSTM-TCN model with attention mechanism [C ] // Proceedings of the 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC) . Piscataway : IEEE Press , 2023 : 1130 - 1136 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [J ] . Advances in Neural Information Processing Systems , 2017 , 30 ( 1 ): 5998 - 6008 .
CORTES C , VAPNIK V . Support-vector networks [J ] . Machine Learning , 1995 , 20 ( 3 ): 273 - 297 .
ROSENBLATT F . The perceptron: a probabilistic model for information storage and organization in the brain [J ] . Psychological Review , 1958 , 65 ( 6 ): 386 - 408 .
ELMAN J L . Distributed representations, simple recurrent networks, and grammatical structure [J ] . Machine Learning , 1991 , 7 ( 2 ): 195 - 225 .
CHO K , MERRIENBOER B V , GULCEHRE C , et al . Learning phrase representations using RNN encoder-decoder for statistical machine translation [J ] . arXiv Preprint , arXiv: 1406.1078 , 2014 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
TAN M X , LE Q V . EfficientNet: rethinking model scaling for convolutional neural networks [J ] . arXiv Preprint , arXiv: 1905.11946 , 2019 .
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [J ] . Communications of the ACM , 2017 , 60 ( 6 ): 84 - 90 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 770 - 778 .
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [J ] . arXiv Preprint , arXiv: 1409.1556 , 2014 .
KUANG X , HE J , HU Z , et al . Comparison of deep feature learning methods for human activity recognition [J ] . Applied Research in Computing , 2018 , 35 ( 9 ): 2815 - 2817 .
SHI Z T , YAO W , ZENG L K , et al . Convolutional neural network-based power system transient stability assessment and instability mode prediction [J ] . Applied Energy , 2020 , 263 : 114586 .
AZMAN S K , ISBEIH Y J , EL MOURSI M S , et al . A unified online deep learning prediction model for small signal and transient stability [J ] . IEEE Transactions on Power Systems , 2020 , 35 ( 6 ): 4585 - 4598 .
ZHANG R Y , WU J Y , XU Y , et al . A hierarchical self-adaptive method for post-disturbance transient stability assessment of power systems using an integrated CNN-based ensemble classifier [J ] . Energies , 2019 , 12 ( 17 ): 3217 .
ZHANG R F , YAO W , SHI Z T , et al . Encoding time series as images: a robust and transferable framework for power system DIM identification combining rules and VGGNet [J ] . IEEE Transactions on Power Systems , 2023 , 38 ( 6 ): 5781 - 5793 .
THAKKAR A , LOHIYA R . Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System [J ] . Information Fusion , 2023 , 90 : 353 - 363 .
WANG Z , OATES T . Imaging time-series to improve classification and imputation [J ] . arXiv Preprint , arXiv: 1506.00327 , 2015 .
ALSALEMI A , AMIRA A , MALEKMOHAMADI H , et al . Lightweight Gramian angular field classification for edge Internet of energy applications [J ] . Cluster Computing , 2023 , 26 ( 2 ): 1375 - 1387 .
SHIN H C , ROTH H R , GAO M C , et al . Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning [J ] . IEEE Transactions on Medical Imaging , 2016 , 35 ( 5 ): 1285 - 1298 .
TAN M X , CHEN B , PANG R M , et al . MnasNet: platform-aware neural architecture search for mobile [C ] // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2019 : 2815 - 2823 .
DENG L W , SUO H F , LI D J . Deepfake video detection based on EfficientNet-V2 network [J ] . Computational Intelligence and Neuroscience , 2022 ( 1 ): 1 - 13 .
TAN M X , LE Q V . EfficientNetV2: smaller models and faster training [J ] . arXiv Preprint , arXiv: 2104.00298 , 2021 .
RAMACHANDRAN P , ZOPH B , LE Q V . Searching for activation functions [J ] . arXiv Preprint , arXiv: 1710.05941 , 2017 .
0
浏览量
61
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构