浏览全部资源
扫码关注微信
陆军工程大学石家庄校区,河北 石家庄 050003
[ "王永川(1977- ),男,河北元氏人,博士,陆军工程大学副教授、硕士生导师,主要研究方向为通信信号处理、抗干扰通信、无人机通信等。" ]
[ "周平(1988- ),男,安徽无为人,博士,陆军工程大学讲师,主要研究方向为无线通信、无人机通信等。" ]
[ "黄局(1996- ),男,山东兰陵人,陆军工程大学助教,主要研究方向为无人机通信等。" ]
收稿日期:2024-03-27,
修回日期:2024-07-01,
纸质出版日期:2024-09-25
移动端阅览
王永川,周平,黄局.正交时频空调制的信道估计与信号检测技术研究现状[J].通信学报,2024,45(09):229-243.
WANG Yongchuan,ZHOU Ping,HUANG Ju.Research status of channel estimation and signal detection techniques for orthogonal time frequency space modulation[J].Journal on Communications,2024,45(09):229-243.
王永川,周平,黄局.正交时频空调制的信道估计与信号检测技术研究现状[J].通信学报,2024,45(09):229-243. DOI: 10.11959/j.issn.1000-436x.2024151.
WANG Yongchuan,ZHOU Ping,HUANG Ju.Research status of channel estimation and signal detection techniques for orthogonal time frequency space modulation[J].Journal on Communications,2024,45(09):229-243. DOI: 10.11959/j.issn.1000-436x.2024151.
正交时频空(OTFS)调制是一种适用于高多普勒衰落信道的二维时延-多普勒(DD)域复用的技术,它通过一组二维变换将时间-频率(TF)域双选择性信道转换为在DD域近乎稳定的信道,使OTFS系统有能力获得时间和频率全分集。OTFS系统要想获得这种时间和频率全分集增益,需要为接收机设计高性能的信道估计和信号检测算法。首先介绍了OTFS调制的基本原理和系统模型,然后对信道估计和信号检测算法进行了分类综述和比较,最后讨论了信道估计和信号检测的未来挑战和解决途径。
Orthogonal time frequency space (OTFS) modulation is a multiplexing technique designed in the two-dimensional (2D) delay-Doppler domain suited for high Doppler fading channels. OTFS converts a doubly-selective
channel into an almost non-fading channel in the delay-Doppler domain through a series of 2D transformations. OTFS has the potential of capturing time-frequency full diversity. In order to obtain the time-frequency full diversity gain
a receiver with advanced channel estimation and signal detection algorithm is needed. The basic principle and system model of OTFS was firstly introduced
then the existing channel estimation and signal detection algorithms were reviewed
finally the future challenges and solutions for channel estimation and signal detection were discussed.
栾宁 , 熊轲 , 张煜 , 等 . 6G: 典型应用、关键技术与面临挑战 [J ] . 物联网学报 , 2022 , 6 ( 1 ): 29 - 43 .
LUAN N , XIONG K , ZHANG Y , et al . 6G: typical applications, key technologies and challenges [J ] . Chinese Journal on Internet of Things , 2022 , 6 ( 1 ): 29 - 43 .
MATZ G , BOLCSKEI H , HLAWATSCH F . Time-frequency foundations of communications: concepts and tools [J ] . IEEE Signal Processing Magazine , 2013 , 30 ( 6 ): 87 - 96 .
HADANI R , RAKIB S , TSATSANIS M , et al . Orthogonal time frequency space modulation [C ] // Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2017 : 1 - 6 .
LIU H Y , LIU Y M , YANG M , et al . On the characterizations of OTFS modulation over multipath rapid fading channel [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 3 ): 2008 - 2021 .
MA Y Y , MA G Y , AI B , et al . Characteristics of channel spreading function and performance of OTFS in high-speed railway [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 10 ): 7038 - 7054 .
WEI Z Q , YUAN W J , LI S Y , et al . Orthogonal time-frequency space modulation: a promising next-generation waveform [J ] . IEEE Wireless Communications , 2021 , 28 ( 4 ): 136 - 144 .
YUAN W J , LI S Y , WEI Z Q , et al . New delay Doppler communication paradigm in 6G era: a survey of orthogonal time frequency space (OTFS) [J ] . China Communications , 2023 , 20 ( 6 ): 1 - 25 .
XIAO L X , LI S , QIAN Y , et al . An overview of OTFS for Internet of things: concepts, benefits, and challenges [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 10 ): 7596 - 7618 .
MOHAMMED S K . Derivation of OTFS modulation from first principles [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 8 ): 7619 - 7636 .
LAMPEL F , JOUDEH H , ALVARADO A , et al . Orthogonal time frequency space modulation based on the discrete zak transform [J ] . Entropy , 2022 , 24 ( 12 ): 1704 .
MOHAMMED S K , HADANI R , CHOCKALINGAM A , et al . OTFS—a mathematical foundation for communication and radar sensing in the delay-Doppler domain [J ] . IEEE BITS the Information Theory Magazine , 2022 , 2 ( 2 ): 36 - 55 .
WEI Z Q , LI S Y , YUAN W J , et al . Orthogonal time frequency space modulation: Part I: fundamentals and challenges ahead [J ] . IEEE Communications Letters , 2023 , 27 ( 1 ): 4 - 8 .
LI S Y , YUAN W J , WEI Z Q , et al . Orthogonal time frequency space modulation: Part II: transceiver designs [J ] . IEEE Communications Letters , 2023 , 27 ( 1 ): 9 - 13 .
RAVITEJA P , PHAN K T , HONG Y , et al . Interference cancellation and iterative detection for orthogonal time frequency space modulation [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 10 ): 6501 - 6515 .
SURABHI G D , AUGUSTINE R M , CHOCKALINGAM A . On the diversity of uncoded OTFS modulation in doubly-dispersive channels [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 6 ): 3049 - 3063 .
RAVITEJA P , VITERBO E , HONG Y . OTFS performance on static multipath channels [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 3 ): 745 - 748 .
SURABHI G D , AUGUSTINE R M , CHOCKALINGAM A . Peak-to-average power ratio of OTFS modulation [J ] . IEEE Communications Letters , 2019 , 23 ( 6 ): 999 - 1002 .
WEI Z Q , YUAN W J , LI S Y , et al . Transmitter and receiver window designs for orthogonal time-frequency space modulation [J ] . IEEE Transactions on Communications , 2021 , 69 ( 4 ): 2207 - 2223 .
RAVITEJA P , HONG Y , VITERBO E , et al . Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 1 ): 957 - 961 .
MURALI K R , CHOCKALINGAM A . On OTFS modulation for high-Doppler fading channels [C ] // Proceedings of the 2018 Information Theory and Applications Workshop (ITA) . Piscataway : IEEE Press , 2018 : 1 - 10 .
RAVITEJA P , PHAN K T , HONG Y . Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 5 ): 4906 - 4917 .
KHAN I A , MOHAMMED S K . A low-complexity OTFS channel estimation method for fractional delay-Doppler scenarios [J ] . IEEE Wireless Communications Letters , 2023 , 12 ( 9 ): 1484 - 1488 .
ZHAO L , GAO W J , GUO W B . Sparse Bayesian learning of delay-Doppler channel for OTFS system [J ] . IEEE Communications Letters , 2020 , 24 ( 12 ): 2766 - 2769 .
YUAN W J , LI S Y , WEI Z Q , et al . Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 9 ): 1954 - 1958 .
HASHIMOTO N , OSAWA N , YAMAZAKI K , et al . Channel estimation and equalization for CP-OFDM-based OTFS in fractional Doppler channels [C ] // Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway : IEEE Press , 2021 : 1 - 7 .
QU H Y , LIU G H , ZHANG L , et al . Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems [J ] . IEEE Transactions on Communications , 2021 , 69 ( 7 ): 4717 - 4731 .
ZHANG H Y , HUANG X J , ZHANG J A . Low-overhead OTFS transmission with frequency or time domain channel estimation [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 1 ): 799 - 811 .
SHENG H T , WU W R . Time-frequency domain channel estimation for OTFS systems [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 2 ): 937 - 948 .
LI Z J , YUAN W J , GUO Q H , et al . UAMP-based delay-Doppler channel estimation for OTFS systems [J ] . China Communications , 2023 , 20 ( 10 ): 70 - 84 .
RAMACHANDRAN M K , CHOCKALINGAM A . MIMO-OTFS in high-Doppler fading channels: signal detection and channel estimation [C ] // Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2018 : 206 - 212 .
PAN J . Cramer-Rao low bound of channel estimation for orthogonal time frequency space modulation system [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 10 ): 9646 - 9658 .
WEI Z Q , YUAN W J , LI S Y , et al . Off-grid channel estimation with sparse Bayesian learning for OTFS systems [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 9 ): 7407 - 7426 .
SHEN W Q , DAI L L , AN J P , et al . Channel estimation for orthogonal time frequency space (OTFS) massive MIMO [J ] . IEEE Transactions on Signal Processing , 2019 , 67 ( 16 ): 4204 - 4217 .
TIWARI S , DAS S S , RANGAMGARI V . Low complexity LMMSE receiver for OTFS [J ] . IEEE Communications Letters , 2019 , 23 ( 12 ): 2205 - 2209 .
SURABHI G D , CHOCKALINGAM A . Low-complexity linear equalization for OTFS modulation [J ] . IEEE Communications Letters , 2020 , 24 ( 2 ): 330 - 334 .
LAMPEL F , ALVARADO A , WILLEMS F M J . A sliding-window LMMSE turbo equalization scheme for OTFS [J ] . IEEE Communications Letters , 2023 , 27 ( 12 ): 3320 - 3324 .
XIANG L P , LIU Y S , YANG L L , et al . Gaussian approximate message passing detection of orthogonal time frequency space modulation [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 10 ): 10999 - 11004 .
LI X , YUAN W J . OTFS detection based on Gaussian mixture distribution: a generalized message passing approach [J ] . IEEE Communications Letters , 2024 , 28 ( 1 ): 178 - 182 .
YUAN Z D , LIU F , YUAN W J , et al . Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 2 ): 714 - 725 .
YUAN W J , WEI Z Q , YUAN J H , et al . A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 7 ): 7976 - 7980 .
ZHANG Y F , ZHU X , LIU Y J , et al . A cross-domain iterative OTFS receiver for sparse doubly selective channels [J ] . IEEE Wireless Communications Letters , 2024 , 13 ( 1 ): 54 - 58 .
LIU M M , LI S Y , BAI B M , et al . Reduced-complexity cross-domain iterative detection for OTFS modulation via delay-Doppler decoupling [C ] // Proceedings of the 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway : IEEE Press , 2023 : 546 - 550 .
THAJ T , VITERBO E . Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 12 ): 15606 - 15622 .
PRIYA P , VITERBO E , HONG Y . Low complexity MRC detection for OTFS receiver with oversampling [J ] . IEEE Transactions on Wireless Communications , 2024 , 23 ( 2 ): 1459 - 1473 .
ZHANG H J , LV M H , LI J N , et al . An improved MRC-rake symbol detector for OTFS modulation using expectation cancellation [C ] // Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2023 : 1 - 6 .
LI H , DONG Y Y , GONG C H , et al . Low complexity receiver via expectation propagation for OTFS modulation [J ] . IEEE Communications Letters , 2021 , 25 ( 10 ): 3180 - 3184 .
SHAN Y R , WANG F G , HAO Y X . Orthogonal time frequency space detection via low-complexity expectation propagation [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 12 ): 10887 - 10901 .
SHAO H , ZHANG H J , ZHOU H , et al . A complexity-reduced QRD-SIC detector for interleaved OTFS [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 2 ): 950 - 960 .
YE Z H , YAN S F , SUI Z P , et al . Successive interference cancellation aided bidirectional soft decision feedback equalization for OTFS systems [J ] . IEEE Wireless Communications Letters , 2023 , 12 ( 12 ): 2028 - 2032 .
YUAN Z M , TANG M , CHEN J H , et al . Low complexity parallel symbol detection for OTFS modulation [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 4 ): 4904 - 4918 .
邢旺 , 唐晓刚 , 周一青 , 等 . 面向OTFS的时延-多普勒域信道估计方法综述 [J ] . 通信学报 , 2022 , 43 ( 12 ): 188 - 201 .
XING W , TANG X G , ZHOU Y Q , et al . Survey of channel estimation method in delay-Doppler domain for OTFS [J ] . Journal on Communications , 2022 , 43 ( 12 ): 188 - 201 .
ZHANG Z Q , LIU H , WANG Q L , et al . A survey on low complexity detectors for OTFS systems [J ] . ZTE Communications , 2021 , 19 ( 4 ): 3 - 15 .
LI Z J , YUAN W J , YOU C S , et al . Efficient channel estimation for OTFS systems in the presence of fractional Doppler [C ] // Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2023 : 1 - 5 .
LIU F , YUAN Z D , GUO Q H , et al . Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 12 ): 7773 - 7785 .
ZHAO L , YANG J , LIU Y L , et al . Block sparse Bayesian learning-based channel estimation for MIMO-OTFS systems [J ] . IEEE Communications Letters , 2022 , 26 ( 4 ): 892 - 896 .
MISHRA H B , SINGH P , PRASAD A K , et al . OTFS channel estimation and data detection designs with superimposed pilots [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 4 ): 2258 - 2274 .
SRIVASTAVA S , SINGH R K , JAGANNATHAM A K , et al . Bayesian learning aided sparse channel estimation for orthogonal time frequency space modulated systems [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 8 ): 8343 - 8
DAS S S , RANGAMGARI V , TIWARI S , et al . Time domain channel estimation and equalization of CP-OTFS under multiple fractional dopplers and residual synchronization errors [J ] . IEEE Access , 2021 , 9 : 10561 - 10576 .
蒲旭敏 , 刘雁翔 , 宋米雪 , 等 . 基于模型驱动深度学习的OTFS信道估计 [J ] . 电子与信息学报 , 2024 , 46 ( 2 ): 680 - 687 .
PU X M , LIU Y X , SONG M X , et al . Orthogonal time frequency space channel estimation based on model-driven deep learning [J ] . Journal of Electronics & Information Technology , 2024 , 46 ( 2 ): 680 - 687 .
GUO L , GU P , ZOU J , et al . DNN-based fractional Doppler channel estimation for OTFS modulation [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 11 ): 15062 - 15067 .
ZHANG X Q , YUAN W J , LIU C , et al . Deep learning with a self-adaptive threshold for OTFS channel estimation [C ] // Proceedings of the 2022 International Symposium on Wireless Communication Systems (ISWCS) . Piscataway : IEEE Press , 2022 : 1 - 5 .
YANG C Y , WANG J L , PAN Z N , et al . Delay-Doppler frequency domain-aided superimposing pilot OTFS channel estimation based on deep learning [C ] // Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall) . Piscataway : IEEE Press , 2022 : 1 - 6 .
ZOU T T , XU W J , GAO H , et al . Low-complexity linear equalization for OTFS systems with rectangular waveforms [C ] // Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway : IEEE Press , 2021 : 1 - 6 .
LI S Y , YUAN W J , WEI Z Q , et al . Cross domain iterative detection for orthogonal time frequency space modulation [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 4 ): 2227 - 2242 .
LI H T , YU Q Y . Doubly-iterative sparsified MMSE turbo equalization for OTFS modulation [J ] . IEEE Transactions on Communications , 2023 , 71 ( 3 ): 1336 - 1351 .
ENKU Y K , BAI B M , WAN F , et al . Two-dimensional convolutional neural network-based signal detection for OTFS systems [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 11 ): 2514 - 2518 .
ZHOU Z , LIU L J , XU J R . Learning to equalize OTFS [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 9 ): 7723 - 7736 .
GONG Y , LI Q Y , MENG F K , et al . ViterbiNet-based signal detection for OTFS system [J ] . IEEE Communications Letters , 2023 , 27 ( 3 ): 881 - 885 .
LI S Y , YUAN W J , WEI Z Q , et al . Hybrid MAP and PIC detection for OTFS modulation [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 7 ): 7193 - 7198 .
LIU Y J , GUAN Y L , DAVID GONZÁLEZ G . Turbo BEM OTFS receiver with optimized superimposed pilot power [J ] . IEEE Transactions on Communications , 2024 , 72 ( 1 ): 601 - 617 .
SAMUEL N , DISKIN T , WIESEL A . Learning to detect [J ] . IEEE Transactions on Signal Processing , 2019 , 67 ( 10 ): 2554 - 2564 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
FARSAD N , GOLDSMITH A , FARSAD N , et al . Detection algorithms for communication systems using deep learning [J ] . arXiv Preprint , arXiv: 1705.08044 , 2017 .
0
浏览量
61
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构