浏览全部资源
扫码关注微信
1.西安电子科技大学通信工程学院,陕西 西安 710077
2.深圳市国电科技通信有限公司,广东 深圳 518000
3.北京跟踪与通信技术研究所,北京 100085
[ "俱莹(1986- ),女,陕西宝鸡人,博士,西安电子科技大学副教授、博士生导师,主要研究方向为无线通信网络安全、毫米波通信、物理层安全传输、车联网安全、区块链等。" ]
[ "陈宇超(1997- ),男,广东揭阳人,深圳市国电科技通信有限公司工程师,主要研究方向为通信类产品研发、管理及设计等。" ]
[ "田素恒(1999- ),男,山东济宁人,西安电子科技大学硕士生,主要研究方向为无线通信物理层安全、太赫兹通信、通信感知一体化等。" ]
[ "刘雷(1987- ),男,河南南阳人,博士,西安电子科技大学副教授,主要研究方向为车联网、边缘智能、算力网络和区块链等。" ]
[ "李赞(1975- ),女,陕西西安人,博士,西安电子科技大学教授、博士生导师,主要研究方向为智能隐蔽通信、通信信号处理等。" ]
[ "裴庆祺(1975- ),男,广西玉林人,博士,西安电子科技大学教授、博士生导师,主要研究方向为数据安全与隐私保护、区块链、边缘计算及安全等。" ]
[ "王明阳(1977- ),男,四川南充人,博士,北京跟踪与通信技术研究所教授,主要研究方向为网络和系统安全、信息保护和数据安全等。" ]
收稿日期:2024-03-12,
修回日期:2024-07-26,
纸质出版日期:2024-08-25
移动端阅览
俱莹,陈宇超,田素恒等.毫米波车联网多基站多用户下的安全传输方案[J].通信学报,2024,45(08):84-99.
JU Ying,CHEN Yuchao,TIAN Suheng,et al.Secure transmission scheme for millimeter-wave Internet of vehicles with multiple base stations and users[J].Journal on Communications,2024,45(08):84-99.
俱莹,陈宇超,田素恒等.毫米波车联网多基站多用户下的安全传输方案[J].通信学报,2024,45(08):84-99. DOI: 10.11959/j.issn.1000-436x.2024149.
JU Ying,CHEN Yuchao,TIAN Suheng,et al.Secure transmission scheme for millimeter-wave Internet of vehicles with multiple base stations and users[J].Journal on Communications,2024,45(08):84-99. DOI: 10.11959/j.issn.1000-436x.2024149.
针对移动场景下毫米波安全波束形成的时效性和毫米波动态窃听场景下安全连接的鲁棒性等问题,提出了一种基于决斗双重深度Q网络(D3QN)-深度确定性策略梯度(DDPG)算法的多智能体安全协作通信方案。该方案利用路侧单元(RSU)辅助的协作干扰技术降低窃听者对合法信号的接收质量,并通过联合优化车辆用户(VU)的基站与波束连接控制、阻塞RSU的选择,以及RSU的协作干扰方向和发射功率控制,使得所有合法车辆的总保密传输速率最大化。在此基础上,针对车联网的高动态性,通过构建基于D3QN的VU智能体和基于D3QN-DDPG的RSU智能体,实现了实时的离散-连续混合决策。最后,通过多维度的性能分析和方案对比实验,验证了所提方案的有效性。
For the timeliness of millimeter-wave secure beamforming in mobile scenarios and the robustness of secure connections in millimeter-wave dynamic eavesdropping scenarios
a multi-agent secure cooperative communication scheme based on a dueling double deep Q network (D3QN)-deep deterministic policy gradient (DDPG) algorithm was proposed to address communication security issues. The scheme utilized road side unit (RSU)-assisted cooperative jamming technology to reduce the eavesdropper’s reception quality of confidential signals. The optimization problem was formulated to maximize the total secrecy rate of all legitimate vehicles by optimizing the joint base station and beam connection control of the VUs
the selection of the jamming RSUs
and the cooperative jamming direction and transmit power of RSUs. Furthermore
for the challenges posed by the high dynamics of vehicular networks
the scheme achieved a fusion of real-time discrete and continuous decision-making by creating a VU agent grounded in D3QN and an RSU agent harnessing D3QN-DDPG capabilities. Finally
through multi-dimensional performance analysis and scheme comparison experiments
simulation results demonstrate the effectiveness of the proposed scheme.
PENG H X , LE L , SHEN X M , et al . Vehicular communications: a network layer perspective [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 2 ): 1064 - 1078 .
CHEN S Z , HU J L , SHI Y , et al . Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G [J ] . IEEE Communications Standards Magazine , 2017 , 1 ( 2 ): 70 - 76 .
VA V , SHIMIZU T , BANSAL G , et al . Millimeter wave vehicular communications: a survey [J ] . Foundations and Trends® in Networking , 2016 , 10 ( 1 ): 1 - 113 .
马小博 , 彭嘉豪 , 薛磊 , 等 . 5G时代车联网信息物理融合系统综合安全研究 [J ] . 中国科学(信息科学) , 2019 , 49 ( 12 ): 1640 - 1658 .
MA X B , PENG J H , XUE L , et al . Integrated security of cyber-physical vehicle networked systems in the age of 5G [J ] . Scientia Sinica (Informationis) , 2019 , 49 ( 12 ): 1640 - 1658 .
范茜莹 , 黄传河 , 朱钧宇 , 等 . 无人机辅助车联网环境下干扰感知的节点接入机制 [J ] . 通信学报 , 2019 , 40 ( 6 ): 90 - 101 .
FAN X Y , HUANG C H , ZHU J Y , et al . Interference-aware node access scheme in UAV-aided VANET [J ] . Journal on Communications , 2019 , 40 ( 6 ): 90 - 101 .
HE X , YENER A . MIMO wiretap channels with unknown and varying eavesdropper channel states [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 11 ): 6844 - 6869 .
ZHENG T X , WEN Y T , LIU H W , et al . Physical-layer security of uplink mmWave transmissions in cellular V2X networks [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 11 ): 9818 - 9833 .
SHIU Y S , CHANG S Y , WU H C , et al . Physical layer security in wireless networks: a tutorial [J ] . IEEE Wireless Communications , 2011 , 18 ( 2 ): 66 - 74 .
POOR H V , SCHAEFER R F . Wireless physical layer security [J ] . Proceedings of the National Academy of Sciences of the United States of America , 2017 , 114 ( 1 ): 19 - 26 .
JU Y , YANG M J , CHAKRABORTY C , et al . Reliability-security tradeoff analysis in mmWave Ad Hoc-based CPS [J ] . ACM Transactions on Sensor Networks , 2024 , 20 ( 2 ): 1 - 23 .
WANG H Y , JU Y , ZHANG N , et al . Resisting malicious eavesdropping: physical layer security of mmWave MIMO communications in presence of random blockage [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 17 ): 16372 - 16385 .
ELTAYEB M E , CHOI J , AL-NAFFOURI T Y , et al . Enhancing secrecy with multiantenna transmission in millimeter wave vehicular communication systems [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 9 ): 8139 - 8151 .
YANG M J , JU Y , LIU L , et al . Secure mmWave C-V2X communications using cooperative jamming [C ] // Proceedings of the GLOBECOM 2022 - 2022 IEEE Global Communications Conference . Piscataway : IEEE Press , 2022 : 2686 - 2691 .
WANG L , GE S X , ZHOU X B , et al . Multi-agent reinforcement learning-based cooperative beam selection in mmWave vehicular networks [C ] // Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) . Piscataway : IEEE Press , 2021 : 510 - 517 .
TAN J J , LIANG Y C , ZHANG L , et al . Deep reinforcement learning for joint channel selection and power control in D2D networks [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 2 ): 1363 - 1378 .
ASADI A , MÜLLER S , SIM G H , et al . FML: fast machine learning for 5G mmWave vehicular communications [C ] // Proceedings of the IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2018 : 1961 - 1969 .
JU Y , WANG H Y , CHEN Y C , et al . Deep reinforcement learning based joint beam allocation and relay selection in mmWave vehicular networks [J ] . IEEE Transactions on Communications , 2023 , 71 ( 4 ): 1997 - 2012 .
PENG H X , SHEN X M . Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 1 ): 131 - 141 .
LI Y H , CHEN H K , FENG M Y . A novel model for the traffic of urban roads based on queuing theory [C ] // Proceedings of the 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS) . Piscataway : IEEE Press , 2020 : 190 - 194 .
CHETLUR V V , DHILLON H S . Poisson line cox process: asymptotic characterization and performance analysis of vehicular networks [C ] // Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2019 : 1 - 6 .
VENUGOPAL K , VALENTI M C , HEATH R W . Interference in finite-sized highly dense millimeter wave networks [C ] // Proceedings of the 2015 Information Theory and Applications Workshop (ITA) . Piscataway : IEEE Press , 2015 : 175 - 180 .
3GPP. Study on evaluation methodology of new vehicle-to-everything (V2X) use cases for LTE and NR: TR 37.885V15.3.0 [R ] . 2019 .
RAPPAPORT T S , SUN S , MAYZUS R , et al . Millimeter wave mobile communications for 5G cellular: it will work! [J ] . IEEE Access , 2013 , 1 : 335 - 349 .
WANG Y Y , VENUGOPAL K , MOLISCH A F , et al . Blockage and coverage analysis with MmWave cross street BSs near urban intersections [C ] // Proceedings of the 2017 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2017 : 1 - 6 .
LI T X , ZHU K , LUONG N C , et al . Applications of multi-agent reinforcement learning in future Internet: a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 2 ): 1240 - 1279 .
LIANG L , YE H , LI G Y . Multi - agent reinforcement learning for spectrum sharing in vehicular networks [C ] // Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway : IEEE Press , 2019 : 1 - 5 .
JU Y , CHEN Y C , CAO Z W , et al . Joint secure offloading and resource allocation for vehicular edge computing network: a multi-agent deep reinforcement learning approach [J ] . IEEE Transactions on Intelligent Transportation Systems , 2023 , 24 ( 5 ): 5555 - 5569 .
ARULKUMARAN K , DEISENROTH M P , BRUNDAGE M , et al . Deep reinforcement learning: a brief survey [J ] . IEEE Signal Processing Magazine , 2017 , 34 ( 6 ): 26 - 38 .
CHEN G , SUN J L , SHEN F , et al . Joint edge computing and caching based on D3QN for lunar Internet of things [C ] // Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP) . Piscataway : IEEE Press , 2022 : 1 - 6 .
HU H , WU D G , ZHOU F H , et al . Dynamic task offloading in MEC-enabled IoT networks: a hybrid DDPG-D3QN approach [C ] // Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2021 : 1 - 6 .
SUTTON R S , BARTO A G . Introduction to reinforcement learning [M ] . Cambridge : MIT Press , 1998 .
MNIH V , KAVUKCUOGLU K , SILVER D , et al . Human-level control through deep reinforcement learning [J ] . Nature , 2015 , 518 ( 7540 ): 529 - 533 .
PENG H X , SHEN X S . DDPG-based resource management for MEC/UAV-assisted vehicular networks [C ] // Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall) . Piscataway : IEEE Press , 2020 : 1 - 6 .
LI Z P , XIANG L , GE X H , et al . Latency and reliability of mmWave multi-hop V2V communications under relay selections [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 9 ): 9807 - 9821 .
DOGO E M , AFOLABI O J , NWULU N I , et al . A comparative analysis of gradient descent-based optimization algorithms on convolutional neural networks [C ] // Proceedings of the 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS) . Piscataway : IEEE Press , 2018 : 92 - 99 .
0
浏览量
33
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构