浏览全部资源
扫码关注微信
1.广东海洋大学数学与计算机学院,广东 湛江 524088
2.河北省计算机虚拟技术与系统集成重点实验室,河北 秦皇岛 066004
3.燕山大学信息科学与工程学院,河北 秦皇岛 066004
[ "陈晶(1976- ),女,黑龙江哈尔滨人,博士,广东海洋大学教授、博士生导师,主要研究方向为社交网络分析和自然语言处理。" ]
[ "邢珂萱(1998- ),女,黑龙江大庆人,燕山大学硕士生,主要研究方向为自然语言处理。" ]
[ "孟伟伦(1998- ),男,河北衡水人,燕山大学博士生,主要研究方向为自然语言处理。" ]
[ "郭景峰(1962- ),男,黑龙江哈尔滨人,博士,燕山大学教授、博士生导师,主要研究方向为数据库理论及应用。" ]
[ "冯建周(1978- ),男,河北沧州人,博士,燕山大学副教授、硕士生导师,主要研究方向为自然语言处理与知识图谱。" ]
收稿日期:2024-03-11,
修回日期:2024-06-06,
纸质出版日期:2024-07-25
移动端阅览
陈晶,邢珂萱,孟伟伦等.基于局部增强的中文医疗命名实体识别模型[J].通信学报,2024,45(07):171-183.
CHEN Jing,XING Kexuan,MENG Weilun,et al.Chinese medical named entity recognition model based on local enhancement[J].Journal on Communications,2024,45(07):171-183.
陈晶,邢珂萱,孟伟伦等.基于局部增强的中文医疗命名实体识别模型[J].通信学报,2024,45(07):171-183. DOI: 10.11959/j.issn.1000-436x.2024117.
CHEN Jing,XING Kexuan,MENG Weilun,et al.Chinese medical named entity recognition model based on local enhancement[J].Journal on Communications,2024,45(07):171-183. DOI: 10.11959/j.issn.1000-436x.2024117.
医学实体的识别往往受到其相邻上下文的影响,目前的命名实体识别方法通常依赖于BiLSTM捕捉文本中的全局依赖关系,缺乏对字符之间局部依赖关系的建模。针对这一问题,提出了一种基于局部增强的中文医疗命名实体识别模型LENER。首先,LENER使用包括字音、字形和语义在内的多源信息来丰富底层字符表征。然后,结合相对位置编码对滑动窗口划分出的序列片段进行局部注意力计算,并通过非线性计算融合局部信息和BiLSTM得到的全局信息。最后,对识别出的实体头部和尾部进行组合,进而提取出实体。实验结果表明,LENER模型具有良好的实体识别能力,与其他模型相比,LENER模型的
F
1
值提升了0.5%~2.0%。
In the medical field
the recognition of medical entities is often influenced by their adjacent context
the current named entity recognition methods typically rely on BiLSTM to capture the global dependency relationships within text
lacking modeling of l
ocal dependencies between characters. To resolve this problem
a Chinese medical named entity recognition model LENER based on local enhancement was proposed. Firstly
the representation of characters was enriched by LENER utilizing multi-source information
including phonetic
graphic and semantic features. Secondly
relative position encoding was combined to perform local attention calculations on sequence segments divided by sliding windows
and local information was fused with global information obtained from BiLSTM through nonlinear computation. Finally
the recognized entity heads and tails were combined by LENER to extract the entities. The experimental results show that the LENER model has excellent entity recognition capabilities
and the
F
1
value is improved by 0.5% to 2% compared with other models.
LI J , SUN A X , HAN J L , et al . A survey on deep learning for named entity recognition [J ] . IEEE Transactions on Knowledge and Data Engineering , 2022 , 34 ( 1 ): 50 - 70 .
ZHANG H , ZONG Y , CHANG B B , et al . Medical entity annotation standard for medical text processing [C ] // Proceedings of the 19th Chinese National Conference on Computational Linguistics . Stroudsburg : ACL Press , 2020 : 561 - 571 .
MELIS G , KOČISKÝ T , BLUNSOM P . Mogrifier LSTM [J ] . arXiv Preprint , arXiv: 1909.01792 , 2019 .
SONG B S , LI F , LIU Y S , et al . Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison [J ] . Briefings in Bioinformatics , 2021 , 22 ( 6 ): 1 - 18 .
FUKUSHIMA K . Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J ] . Biological Cybernetics , 1980 , 36 ( 4 ): 193 - 202 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 : 1735 - 1780 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . New York : ACM Press , 2017 : 6000 - 6010 .
曹依依 , 周应华 , 申发海 , 等 . 基于CNN-CRF的中文电子病历命名实体识别研究 [J ] . 重庆邮电大学学报(自然科学版) , 2019 , 31 ( 6 ): 869 - 875 .
CAO Y Y , ZHOU Y H , SHEN F H , et al . Research on named entity recognition of Chinese electronic medical record based on CNN-CRF [J ] . Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) , 2019 , 31 ( 6 ): 869 - 875 .
DANG T H , LE H Q , NGUYEN T M , et al . D3NER: biomedical named entity recognition using CRF-BiLSTM improved with fine-tuned embeddings of various linguistic information [J ] . Bioinformatics , 2018 , 34 ( 20 ): 3539 - 3546 .
YU J T , BOHNET B , POESIO M . Named entity recognition as dependency parsing [C ] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2020 : 6470 - 6476 .
ZHANG Z C , QIN X H , QIU Y L , et al . Well-behaved transformer for Chinese medical NER [C ] // Proceedings of the 2021 3rd International Conference on Natural Language Processing (ICNLP) . Piscataway : IEEE Press , 2021 : 162 - 167 .
YAN H , DENG B C , LI X N , et al . TENER: adapting transformer encoder for named entity recognition [J ] . arXiv Preprint , arXiv: 1911.04474 , 2019 .
GONG L J , ZHANG Z F . Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF [J ] . Chinese Journal of Engineering , 2020 , 42 ( 4 ): 469 - 475 .
ZHANG Y , YANG J . Chinese NER using lattice LSTM [C ] // Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2018 : 1554 - 1564 .
LI X N , YAN H , QIU X P , et al . FLAT: Chinese NER using flat-lattice transformer [C ] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2020 : 6836 - 6842 .
MA R T , PENG M L , ZHANG Q , et al . Simplify the usage of lexicon in Chinese NER [C ] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2020 : 5951 - 5960 .
GUI T , ZOU Y C , ZHANG Q , et al . A lexicon-based graph neural network for Chinese NER [C ] // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) . Stroudsburg : ACL Press , 2019 : 1040 - 1050 .
YANG P , CONG X , SUN Z Y , et al . Enhanced language representation with label knowledge for span extraction [C ] // Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing . Stroudsburg : ACL Press , 2021 : 4623 - 4635 .
LI X Y , FENG J R , MENG Y X , et al . A unified MRC framework for named entity recognition [C ] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2020 : 5849 - 5859 .
LIU W , FU X Y , ZHANG Y , et al . Lexicon enhanced Chinese sequence labeling using BERT adapter [C ] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . Stroudsburg : ACL Press , 2021 : 5847 - 5858 .
GENG Z C , YAN H , YIN Z Y , et al . TURNER: the uncertainty-based retrieval framework for Chinese NER [J ] . arXiv Preprint , arXiv: 2202.09022 , 2022 .
WU S , SONG X N , FENG Z H . MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition [C ] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . Stroudsburg : ACL Press , 2021 : 1529 - 1539 .
XUAN Z Y , BAO R , JIANG S Y . FGN: fusion glyph network for Chinese named entity recognition [C ] // Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence . Berlin : Springer , 2021 : 28 - 40 .
GU Y J , QU X Y , WANG Z F , et al . Delving deep into regularity: a simple but effective method for Chinese named entity recognition [C ] // Proceedings of the Findings of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2022 : 1863 - 1873 .
LI F , WANG Z , HUI S C , et al . Modularized interaction network for named entity recognition [C ] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . Stroudsburg : ACL Press , 2021 : 200 - 209 .
CHEN C , KONG F . Enhancing entity boundary detection for better Chinese named entity recognition [C ] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . Stroudsburg : ACL Press , 2021 : 20 - 25 .
LI F , LIN Z C , ZHANG M S , et al . A span-based model for joint overlapped and discontinuous named entity recognition [C ] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . Stroudsburg : ACL Press , 2021 : 4814 - 4828 .
WEI J Q , REN X Z , LI X G , et al . NEZHA: neural contextualized representation for Chinese language understanding [J ] . arXiv Preprint , arXiv: 1909.00204 , 2019 .
沈传鑫 , 王永杰 , 熊鑫立 . 基于图注意力网络的DNS隐蔽信道检测 [J ] . 信息网络安全 , 2023 , 23 ( 1 ): 73 - 83 .
SHEN C X , WANG Y J , XIONG X L . DNS covert channel detection based on graph attention network [J ] . Netinfo Security , 2023 , 23 ( 1 ): 73 - 83 .
LEE J , YOON W , KIM S , et al . BioBERT: a pre-trained biomedical language representation model for biomedical text mining [J ] . Bioinformatics , 2020 , 36 ( 4 ): 1234 - 1240 .
WANG X , DOU S H , XIONG L M , et al . MINER: improving out-of-vocabulary named entity recognition from an information theoretic perspective [C ] // Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics . Stroudsburg : ACL Press , 2022 : 5590 - 5600 .
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构