浏览全部资源
扫码关注微信
华中科技大学电子信息与通信学院,湖北 武汉 430074
[ "刘威(1977- ),男,湖北武汉人,博士,华中科技大学教授、博士生导师,主要研究方向为多媒体网络、物联网、智能感知等。" ]
[ "朱雨乐(2001- ),男,安徽阜阳人,华中科技大学硕士生,主要研究方向为多媒体网络等。" ]
[ "付晨(1998- ),男,内蒙古赤峰人,华中科技大学硕士生,主要研究方向为多媒体网络、沉浸式媒体等。" ]
[ "王希(1998- ),女,湖北武汉人,华中科技大学博士生,主要研究方向为多媒体网络、沉浸式视频等。" ]
收稿日期:2024-02-05,
修回日期:2024-04-19,
纸质出版日期:2024-05-30
移动端阅览
刘威,朱雨乐,付晨等.能量感知的点云视频流传输与边缘卸载联合优化[J].通信学报,2024,45(05):80-89.
LIU Wei,ZHU Yule,FU Chen,et al.Joint optimization of transmission and edge offloading for energy-aware point cloud video streaming[J].Journal on Communications,2024,45(05):80-89.
刘威,朱雨乐,付晨等.能量感知的点云视频流传输与边缘卸载联合优化[J].通信学报,2024,45(05):80-89. DOI: 10.11959/j.issn.1000-436x.2024098.
LIU Wei,ZHU Yule,FU Chen,et al.Joint optimization of transmission and edge offloading for energy-aware point cloud video streaming[J].Journal on Communications,2024,45(05):80-89. DOI: 10.11959/j.issn.1000-436x.2024098.
针对点云视频流媒体传输需要调度各类计算和传输资源,而现有工作较少考虑终端显示设备的计算任务带来的能耗问题,提出了一种移动边缘计算辅助的点云视频流传输方案,根据接入带宽和点云视频内容将部分计算任务从终端卸载到边缘完成。该方案建立了一个联合优化模型,在网络资源、终端和边缘算力资源的约束下,最大化用户观看体验收益并最小化终端设备能耗。实验表明,相比于对比方案,所提方案在不同条件下均可提升用户观看质量并降低终端设备能耗。
The transmission of point cloud video streaming requires the scheduling of various computing and transmission resources. Existing research rarely considers the energy consumption issues caused by the computing tasks of terminal display devices. To solve this problem
a point cloud video streaming transmission scheme assisted by mobile edge computing (MEC) was proposed
which offloaded part of computing tasks to the MEC server based on the access bandwidth and point cloud video content. A joint optimization model was established in this scheme to maximize the quality of user’s viewing experience and minimize the energy consumption of terminal device under the constraints of network resources
terminal and edge computing resources. Experimental results show that the proposed scheme can improve the viewing quality of users and reduce the energy consumption of terminal equipment compared with the contrast scheme under different conditions.
WANG Y Z , ZHAO D , ZHANG H H , et al . Bandwidth-efficient mobile volumetric video streaming by exploiting inter-frame correlation [J ] . IEEE Transactions on Mobile Computing , 2024 , doi: 10.1109/TMC. 2024.3367750 http://dx.doi.org/10.1109/TMC.2024.3367750 .
HAN B , LIU Y , QIAN F . ViVo: visibility-aware mobile volumetric video streaming [C ] // Proceedings of the 26th Annual International Conference on Mobile Computing and Networking . New York : ACM Press , 2020 : 1 - 13 .
CUI M Y , LONG J H , FENG M J , et al . OctFormer: efficient octree-based transformer for point cloud compression with local enhancement [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2023 , 37 ( 1 ): 470 - 478 .
SHI Y A , VENKATRAM P , DING Y F , et al . Enabling low bit-rate mpeg V-PCC-encoded volumetric video streaming with 3D sub-sampling [C ] // Proceedings of the 14th ACM Multimedia Systems Conference . New York : ACM Press , 2023 : 108 - 118 .
LI J , ZHANG C , LIU Z , et al . Optimal volumetric video streaming with hybrid saliency based tiling [J ] . IEEE Transactions on Multimedia , 2023 , 25 : 2939 - 2953 .
LIU J H , ZHU B X , WANG F X , et al . CaV3: cache-assisted viewport adaptive volumetric video streaming [C ] // Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR) . Piscataway : IEEE Press , 2023 : 173 - 183 .
GÜL S , PODBORSKI D , BUCHHOLZ T , et al . Low-latency cloud-based volumetric video streaming using head motion prediction [C ] // Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video . New York : ACM Press , 2020 : 27 - 33 .
LI J , WANG H Y , LIU Z , et al . Toward optimal real-time volumetric video streaming: a rolling optimization and deep reinforcement learning based approach [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2023 , 33 ( 12 ): 7870 - 7883 .
LIU Y , HAN B , QIAN F , et al . Vues: practical mobile volumetric video streaming through multiview transcoding [C ] // Proceedings of the 28th Annual International Conference on Mobile Computing and Networking . New York : ACM Press , 2022 : 514 - 527 .
DU J B , YU F R , LU G Y , et al . MEC-assisted immersive VR video streaming over terahertz wireless networks: a deep reinforcement learning approach [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 10 ): 9517 - 9529 .
LIU Y W , LIU J X , ARGYRIOU A , et al . MEC-assisted panoramic VR video streaming over millimeter wave mobile networks [J ] . IEEE Transactions on Multimedia , 2019 , 21 ( 5 ): 1302 - 1316 .
HSU C H . MEC-assisted FoV-aware and QoE-driven adaptive 360° video streaming for virtual reality [C ] // Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN) . Piscataway : IEEE Press , 2020 : 291 - 298 .
HUANG X Y , HE L J , WANG L J , et al . Towards 5G: joint optimization of video segment caching, transcoding and resource allocation for adaptive video streaming in a multi-access edge computing network [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 10 ): 10909 - 10924 .
D’EON E , HARRISON B , MYERS T , et al . 8i voxelized full bodies – a voxelized point cloud dataset [R ] . 2017 .
KRIVOKUĆA M , CHOU P , SAVILL P . 8i voxelized surface light field (8iVSLF) dataset [R ] . 2018 .
KRIVOKUĆA M , CHOU P A , KOROTEEV M . A volumetric approach to point cloud compression–part II: geometry compression [J ] . IEEE Transactions on Image Processing , 2020 , 29 : 2217 - 2229 .
SUBRAMANYAM S , VIOLA I , HANJALIC A , et al . User centered adaptive streaming of dynamic point clouds with low complexity tiling [C ] // Proceedings of the 28th ACM International Conference on Multimedia . New York : ACM Press , 2020 : 3669 - 3677 .
RACA D , LEAHY D , SREENAN C J , et al . Beyond throughput, the next generation: a 5G dataset with channel and context metrics [C ] // Proceedings of the 11th ACM Multimedia Systems Conference . New York : ACM Press , 2020 : 303 - 308 .
0
浏览量
65
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构