浏览全部资源
扫码关注微信
1.郑州大学电气与信息工程学院,河南 郑州 450001
2.中国电子科技集团公司第二十七研究所,河南 郑州 450047
[ "巩克现(1976- ),男,山东泰安人,博士,郑州大学教授、博士生导师,主要研究方向为无线通信信号分析与处理、信道编码、无线接入、目标监测及电子对抗等。" ]
[ "房家乐(1998- ),男,河南周口人,郑州大学硕士生,主要研究方向为宽带无线通信、频谱感知。" ]
[ "刘宏华(1978- ),男,河南西平人,中国电子科技集团公司第二十七研究所高级工程师,主要研究方向为电子对抗等。" ]
[ "孙鹏(1990- ),男,河南周口人,博士,郑州大学副教授,主要研究方向为无线通信、消息传递理论、毫米波通信。" ]
[ "王玮(1974- ),女,黑龙江密山人,博士,郑州大学副教授,主要研究方向为无线通信、信号处理等。" ]
收稿日期:2023-10-12,
修回日期:2024-04-08,
纸质出版日期:2024-05-30
移动端阅览
巩克现,房家乐,刘宏华等.基于增强梯度算子的软阈值宽带频谱感知算法[J].通信学报,2024,45(05):115-127.
GONG Kexian,FANG Jiale,LIU Honghua,et al.Soft threshold wideband spectrum sensing algorithm based on enhanced gradient operator[J].Journal on Communications,2024,45(05):115-127.
巩克现,房家乐,刘宏华等.基于增强梯度算子的软阈值宽带频谱感知算法[J].通信学报,2024,45(05):115-127. DOI: 10.11959/j.issn.1000-436x.2024096.
GONG Kexian,FANG Jiale,LIU Honghua,et al.Soft threshold wideband spectrum sensing algorithm based on enhanced gradient operator[J].Journal on Communications,2024,45(05):115-127. DOI: 10.11959/j.issn.1000-436x.2024096.
为了改善信号梯度特征对幅度的损失以及寻求描述信号的最佳尺度问题,提出了一种基于增强梯度算子的软阈值宽带频谱感知算法。通过引入梯度增强算子还原信号幅值特征,结合信号本身梯度特征,使用不同的尺度描述信号梯度增量,得到软阈值判据,进一步加入尺度融合单元,利用硬阈值加软阈值联合判断的方法,得到描述信号的最佳尺度。理论分析和仿真实验结果表明,在高斯信道和瑞利衰落信道下,相较于MPSG算法,所提算法的检测概率和虚警概率均有明显改善,且复杂度更低。通过对比实测数据的检测效果,所提算法更适用于实际工程中。
In order to improve the amplitude loss of signal gradient features and seek the optimal scale of signal description
a soft threshold wideband spectrum sensing algorithm based on enhanced gradient operators was proposed. By introducing the gradient enhancement operator to restore the signal amplitude
combining the gradient characteristics of the signal itself
using different scales to describe the gradient increment of the signal
the soft threshold criterion was obtained. The scale fusion unit was further added
and the best scale of the description signal was obtained by using the joint judgment of hard threshold and soft threshold. Theoretical analysis and simulation results show that the detection probability and false alarm probability of the proposed algorithm are significantly improved and less complex than MPSG algorithm in Gaussian channel and Rayleigh fading channel. By comparing the detection effect of actual data
the proposed algorithm is more suitable for practical engineering.
XIONG T Y , YAO Y D , REN Y J , et al . Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation: random and adaptive spectrum sensing strategies [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 5 ): 3018 - 3029 .
VLADEANU C , NASTASE C V , MARTIAN A . Energy detection algorithm for spectrum sensing using three consecutive sensing events [J ] . IEEE Wireless Communications Letters , 2016 , 5 ( 3 ): 284 - 287 .
SHEHATA H , KHATTAB T . Energy detection spectrum sensing in full-duplex cognitive radio: the practical case of rician RSI [J ] . IEEE Transactions on Communications , 2019 , 67 ( 9 ): 6544 - 6555 .
SOBRON I , DINIZ P S R , MARTINS W A , et al . Energy detection technique for adaptive spectrum sensing [J ] . IEEE Transactions on Communications , 2015 , 63 ( 3 ): 617 - 627 .
高玉龙 , 陈艳平 , 管修挚 , 等 . 基于循环谱对称性的频谱感知算法 [J ] . 通信学报 , 2011 , 32 ( 11 ): 21 - 26, 34 .
GAO Y L , CHEN Y P , GUAN X Z , et al . Spectrum sensing algorithm based on symmetry of cyclic spectral correlation [J ] . Journal on Communications , 2011 , 32 ( 11 ): 21 - 26, 34 .
TANI A , FANTACCI R , MARABISSI D . A low-complexity cyclostationary spectrum sensing for interference avoidance in femtocell LTE-A-based networks [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 4 ): 2747 - 2753 .
HAYKIN S . Cognitive radio: brain-empowered wireless communications [J ] . IEEE Journal on Selected Areas in Communications , 2005 , 23 ( 2 ): 201 - 220 .
赵晓群 , 刘颖娜 , 武睿 . 基于形态滤波的基音检测新方法 [J ] . 通信学报 , 2004 , 25 ( 5 ): 53 - 58 .
ZHAO X Q , LIU Y N , WU R . A new approach of pitch detection based on morphology filter [J ] . Journal on Communications , 2004 , 25 ( 5 ): 53 - 58 .
王永明 , 张尔扬 , 赵津丽 . 应用形态学滤波的宽带侦察接收机信号检测新方法 [J ] . 应用科学学报 , 2009 , 27 ( 4 ): 343 - 347 .
WANG Y M , ZHANG E Y , ZHAO J L . Signal detection in broadband reconnaissance receiver based on morphological filter [J ] . Journal of Applied Sciences , 2009 , 27 ( 4 ): 343 - 347 .
张超 , 马宏 , 焦义文 . 基于形态学运算的动态信道化子带信号检测法 [J ] . 电子测量技术 , 2018 , 41 ( 23 ): 44 - 48 .
ZHANG C , MA H , JIAO Y W . Subband signal detection of dynamic channelized based on morphological operations [J ] . Electronic Measurement Technology , 2018 , 41 ( 23 ): 44 - 48 .
蒋天立 , 彭华 , 巩克现 . 多尺度形态学滤波下的宽带信号检测方法 [J ] . 信号处理 , 2014 , 30 ( 9 ): 1055 - 1063 .
JIANG T L , PENG H , GONG K X . Signal detection in wideband reconnaissance using multi-scale morphological filter [J ] . Journal of Signal Processing , 2014 , 30 ( 9 ): 1055 - 1063 .
HUANG W Y , WANG R . Low false alarm and narrow-wide band compatible signal detection algorithm combining the multiscale wavelet transform extremum detection with the spectrum energy detection [J ] . IEEE Access , 2023 , 11 : 98039 - 98049 .
ZENG Y , LIANG Y C . Eigenvalue-based spectrum sensing algorithms for cognitive radio [J ] . IEEE Transactions on Communications , 2009 , 57 ( 6 ): 1784 - 1793 .
ZHANG S B , HU Y D , ZHANG L , et al . Novel spectrum sensing and access in cognitive radio networks [J ] . Science China Information Sciences , 2018 , 61 ( 8 ): 089302 .
刘洋 , 任清华 , 孟庆微 , 等 . 一种自适应阈值选择的宽带压缩频谱感知重构算法 [J ] . 信号处理 , 2018 , 34 ( 10 ): 1237 - 1245 .
LIU Y , REN Q H , MENG Q W , et al . An adaptive threshold option reconstruction algorithm for wideband compressed spectrum sensing [J ] . Journal of Signal Processing , 2018 , 34 ( 10 ): 1237 - 1245 .
裴立业 , 江桦 , 麻曰亮 . 基于选择性测量的压缩感知去噪重构算法 [J ] . 通信学报 , 2017 , 38 ( 2 ): 106 - 114 .
PEI L Y , JIANG H , MA Y L . Denoising recovery for compressive sensing based on selective measure [J ] . Journal on Communications , 2017 , 38 ( 2 ): 106 - 114 .
王韦刚 , 杨震 , 顾彬 , 等 . 基于观测矩阵优化的自适应压缩频谱感知 [J ] . 通信学报 , 2014 , 35 ( 8 ): 33 - 39 .
WANG W G , YANG Z , GU B , et al . Adaptive compressed spectrum sensing based on optimized measurement matrix [J ] . Journal on Communications , 2014 , 35 ( 8 ): 33 - 39 .
CHAE K , KIM Y . DS2MA: a deep learning-based spectrum sensing scheme for a multi-antenna receiver [J ] . IEEE Wireless Communications Letters , 2023 , 12 ( 6 ): 952 - 956 .
GAO J B , YI X M , ZHONG C J , et al . Deep learning for spectrum sensing [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 6 ): 1727 - 1730 .
盖建新 , 薛宪峰 , 南瑞祥 , 等 . 基于残差密集网络的频谱感知方法 [J ] . 通信学报 , 2021 , 42 ( 12 ): 182 - 191 .
GAI J X , XUE X F , NAN R X , et al . Spectrum sensing method based on residual dense network [J ] . Journal on Communications , 2021 , 42 ( 12 ): 182 - 191 .
JOSHI D R , POPESCU D C , DOBRE O A . Gradient-based threshold adaptation for energy detector in cognitive radio systems [J ] . IEEE Communications Letters , 2011 , 15 ( 1 ): 19 - 21 .
KOLEY S , MIRZA V , ISLAM S , et al . Gradient-based real-time spectrum sensing at low SNR [J ] . IEEE Communications Letters , 2015 , 19 ( 3 ): 391 - 394 .
张洋 , 彭华 , 巩克现 . 基于多尺度功率谱子带梯度的宽带频谱感知算法与性能分析 [J ] . 通信学报 , 2016 , 37 ( 2 ): 190 - 198 .
ZHANG Y , PENG H , GONG K X . Multi scale power spectral density subband gradient-based spectrum sensing algorithm and performance analysis [J ] . Journal on Communications , 2016 , 37 ( 2 ): 190 - 198 .
0
浏览量
54
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构