浏览全部资源
扫码关注微信
1.紫金山实验室未来网络研究中心,江苏 南京 211111
2.北京邮电大学网络与交换国家重点实验室,北京 100876
[ "胡玉姣(1993- ),女,陕西榆林人,博士,紫金山实验室研究员,主要研究方向为信息物理系统、强化学习、边缘计算、未来网络架构等。" ]
[ "黄韬(1980- ),男,重庆人,博士,北京邮电大学教授、博士生导师,主要研究方向为路由与交换、软件定义网络、内容分发网络、确定性网络、算力网络等。" ]
[ "贾庆民(1990- ),男,山东泰安人,博士,紫金山实验室研究员,主要研究方向为算力网络、确定性网络、边缘智能、工业互联网等。" ]
[ "谢人超(1984- ),男,福建南平人,博士,北京邮电大学教授、博士生导师,主要研究方向为信息中心网络、工业互联网、算力网络、边缘计算、无服务器计算。" ]
[ "刘韵洁(1943- ),男,山东烟台人,中国工程院院士,主要研究方向为未来网络体系架构设计。" ]
收稿日期:2023-11-01,
修回日期:2024-03-11,
纸质出版日期:2024-05-30
移动端阅览
胡玉姣,黄韬,贾庆民等.通算存智一体协同的未来网络模型[J].通信学报,2024,45(05):12-28.
HU Yujiao,HUANG Tao,JIA Qingmin,et al.Future network model for integrated collaboration of communication, computing, caching and intelligence[J].Journal on Communications,2024,45(05):12-28.
胡玉姣,黄韬,贾庆民等.通算存智一体协同的未来网络模型[J].通信学报,2024,45(05):12-28. DOI: 10.11959/j.issn.1000-436x.2024089.
HU Yujiao,HUANG Tao,JIA Qingmin,et al.Future network model for integrated collaboration of communication, computing, caching and intelligence[J].Journal on Communications,2024,45(05):12-28. DOI: 10.11959/j.issn.1000-436x.2024089.
针对智能时代多样化多形态业务对未来网络按需、精准、高效服务的诉求,提出了一种通算存智一体协同的网络模型(3CI-CoNet)。首先以通信技术连接计算设备与存储设备,构建网内计算和网内存储的硬件底座,然后在底座上部署智能网络模型及算法,为网内业务构建智能的网络环境,同时链接与行业/应用相关的智能设备、平台及算法,为新兴应用提供智能的网络服务,保障各业务的有序高效运行。设计了3CI-CoNet的层次化功能架构,包含基础资源层、智能接入层、按需服务层和业务表达层,各层次间相辅相成,协同构建了智能的网络环境和网络服务。进一步,结合自动驾驶和智能制造中的典型场景,论述了3CI-CoNet及其功能架构、运营机制对多形态业务高效运行的支撑作用,阐述了3CI-CoNet在智能时代的推广和应用价值。以智能制造中多AGV按需调度业务场景为原型,通过将3CI-CoNet与其他网络模型相对比,定性定量论证了3CI-CoNet对提升业务效能具有积极作用。最后,总结了3CI-CoNet的未来发展趋势和面临的技术挑战。
In order to adapt to the demands of diverse businesses for on-demand
accurate and efficient network services
the communication-computing-caching-intelligence cooperative network (3CI-CoNet) was proposed. The hardware bases of 3CI-CoNet was built by connecting computing devices and storage devices with communication technologies. Intelligent models and algorithms were deployed on the bases to build an intelligent network environment. Simultaneously
3CI-CoNet connected with intelligent devices
platforms
and algorithms relevant to various industries and applications to provide intelligent network services for emerging applications
ensuring the orderly and efficient operation of various services. 3CI-CoNet was designed with a hierarchical functional architecture
including the foundational resource layer
intelligent access layer
on-demand service layer
and business expression layer. These layers worked together to construct an intelligent network environment and network services. Furthermore
in conjunction with typical scenarios in autonomous driving and smart manufacturing
the functional architecture and operational mechanisms of 3CI-CoNet were discussed. Using the on-demand scheduling of multiple automated guided vehicle (AGV) in intelligent manufacturing as a prototype
a qualitative and quantitative analysis was performed to demonstrate the positive impacts of 3CI-CoNet on enhancing business efficiency. Finally
the future development trends and the technological challenges of 3CI-CoNet were summarized.
LI X , YI W , CHI H L , et al . A critical review of virtual and augmented reality (VR/AR) applications in construction safety [J ] . Automation in Construction , 2018 , 86 : 150 - 162 .
JIANG Y C , YIN S , LI K , et al . Industrial applications of digital twins [J ] . Philosophical Transactions. Series A , Mathematical, Physical, and Engineering Sciences, 2021 , 379 ( 2207 ): 20200360 .
LECUN Y , BENGIO Y , HINTON G . Deep learning [J ] . Nature , 2015 , 521 ( 7553 ): 436 - 444 .
ZHENG Z B , XIE S A , DAI H N , et al . Blockchain challenges and opportunities: a survey [J ] . International Journal of Web and Grid Services , 2018 , 14 ( 4 ): 352 - 375 .
DAI Y F , WANG S P , XIONG N N , et al . A survey on knowledge graph embedding: approaches, applications and benchmarks [J ] . Electronics , 2020 , 9 ( 5 ): 750 .
ZHANG Z , LEE W S . Deep graphical feature learning for the feature matching problem [C ] // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2019 : 5086 - 5095 .
DEVLIN J , CHANG M W , LEE K , et al . BERT: pre-training of deep bidirectional transformers for language understanding [J ] . arXiv Preprint , arXiv: 1810.04805 , 2018 .
MOON J , PAPAIOANNOU S , LAOUDIAS C , et al . Deep reinforcement learning multi-UAV trajectory control for target tracking [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 20 ): 15441 - 15455 .
YOU X H , WANG C X , HUANG J , et al . Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts [J ] . Science China Information Sciences , 2020 , 64 ( 1 ): 110301 .
刘韵洁 , 黄韬 , 张娇 , 等 . 服务定制网络 [J ] . 通信学报 , 2014 , 35 ( 12 ): 1 - 9 .
LIU Y J , HUANG T , ZHANG J , et al . Service customized networking [J ] . Journal on Communications , 2014 , 35 ( 12 ): 1 - 9 .
YU F R . From information networking to intelligence networking: motivations, scenarios, and challenges [J ] . IEEE Network , 2021 , 35 ( 6 ): 209 - 216 .
ZOLFAGHARI B , SRIVASTAVA G , ROY S , et al . Content delivery networks: state of the art, trends, and future roadmap [J ] . ACM Computing Surveys , 2020 , 53 ( 2 ): 1 - 34 .
STOCKER V , SMARAGDAKIS G , LEHR W , et al . The growing complexity of content delivery networks: challenges and implications for the Internet ecosystem [J ] . Telecommunications Policy , 2017 , 41 ( 10 ): 1003 - 1016 .
SHANMUGAM K , GOLREZAEI N , DIMAKIS A G , et al . FemtoCaching: wireless content delivery through distributed caching helpers [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 12 ): 8402 - 8413 .
XYLOMENOS G , VERVERIDIS C N , SIRIS V A , et al . A survey of information-centric networking research [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 2 ): 1024 - 1049 .
VASILAKOS A V , LI Z , SIMON G , et al . Information centric network: research challenges and opportunities [J ] . Journal of Network and Computer Applications , 2015 , 52 : 1 - 10 .
FANG C , YAO H P , WANG Z W , et al . A survey of mobile information-centric networking: research issues and challenges [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 3 ): 2353 - 2371 .
贾庆民 , 丁瑞 , 刘辉 , 等 . 算力网络研究进展综述 [J ] . 网络与信息安全学报 , 2021 , 7 ( 5 ): 1 - 12 .
JIA Q M , DING R , LIU H , et al . Survey on research progress for compute first networking [J ] . Chinese Journal of Network and Information Security , 2021 , 7 ( 5 ): 1 - 12 .
贾庆民 , 胡玉姣 , 张华宇 , 等 . 确定性算力网络研究 [J ] . 通信学报 , 2022 , 43 ( 10 ): 55 - 64 .
JIA Q M , HU Y J , ZHANG H Y , et al . Research on deterministic computing power network [J ] . Journal on Communications , 2022 , 43 ( 10 ): 55 - 64 .
胡玉姣 , 贾庆民 , 孙庆爽 , 等 . 融智算力网络及其功能架构 [J ] . 计算机科学 , 2022 , 49 ( 9 ): 249 - 259 .
HU Y J , JIA Q M , SUN Q S , et al . Functional architecture to intelligent computing power network [J ] . Computer Science , 2022 , 49 ( 9 ): 249 - 259 .
张宏科 , 于成晓 , 权伟 , 等 . 融算网络体系基础研究 [J ] . 电子学报 , 2022 , 50 ( 12 ): 2928 - 2934 .
ZHANG H K , YU C X , QUAN W , et al . Fundamental research on computing integration networking [J ] . Acta Electronica Sinica , 2022 , 50 ( 12 ): 2928 - 2934 .
ZHOU Y Q , TIAN L , LIU L , et al . Fog computing enabled future mobile communication networks: a convergence of communication and computing [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 20 - 27 .
SUN Y P , CHEN Z Y , TAO M X , et al . Communications, caching, and computing for mobile virtual reality: modeling and tradeoff [J ] . IEEE Transactions on Communications , 2019 , 67 ( 11 ): 7573 - 7586 .
KAZMI S M A , DANG T N , YAQOOB I , et al . Infotainment enabled smart cars: a joint communication, caching, and computation approach [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 9 ): 8408 - 8420 .
ZHUANG W H , YE Q , LYU F , et al . SDN/NFV-empowered future IoV with enhanced communication, computing, and caching [J ] . Proceedings of the IEEE , 2020 , 108 ( 2 ): 274 - 291 .
CHEN Q X , YU F R , HUANG T , et al . An integrated framework for software defined networking, caching, and computing [J ] . IEEE Network , 2017 , 31 ( 3 ): 46 - 55 .
CHEN M , QIAN Y F , HAO Y X , et al . Data-driven computing and caching in 5G networks: architecture and delay analysis [J ] . IEEE Wireless Communications , 2018 , 25 ( 1 ): 70 - 75 .
ZHOU Y Q , LIU L , WANG L , et al . Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching [J ] . Digital Communications and Networks , 2020 , 6 ( 3 ): 253 - 260 .
LEACH P , MEALLING M , SALZ R . A universally unique IDentifier (UUID) URN namespace [J ] . RFC , 2005 , 4122 : 1 - 32 .
DAGEVILLE B , CRUANES T , ZUKOWSKI M , et al . The snowflake elastic data warehouse [C ] // Proceedings of the 2016 International Conference on Management of Data . New York : ACM Press , 2016 : 215 - 226 .
DECKER S , MITRA P , MELNIK S . Framework for the semantic Web: an RDF tutorial [J ] . IEEE Internet Computing , 2000 , 4 ( 6 ): 68 - 73 .
MCGUINNESS D L , VAN HARMELEN F . OWL Web ontology language overview [J ] . W 3C Recommendation , 2004 , 10 ( 10 ): 2004 .
VERMA A , PEDROSA L , KORUPOLU M , et al . Large-scale cluster management at Google with Borg [C ] // Proceedings of the Tenth European Conference on Computer Systems . New York : ACM Press , 2015 : 1 - 17 .
CARRIÓN C . Kubernetes scheduling: taxonomy, ongoing issues and challenges [J ] . ACM Computing Surveys , 2022 , 55 ( 7 ): 1 - 37 .
SENJAB K , ABBAS S , AHMED N , et al . A survey of Kubernetes scheduling algorithms [J ] . Journal of Cloud Computing , 2023 , 12 ( 1 ): 87 .
FRAMPTON M . Apache mesos [M ] . Berkeley : Apress , 2018 .
SAHA P , BELTRE A , GOVINDARAJU M . Exploring the fairness and resource distribution in an apache mesos environment [C ] // Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) . Piscataway : IEEE Press , 2018 : 434 - 441 .
MEI Y , CHENG L W , TALWAR V , et al . Turbine: facebook's service management platform for stream processing [C ] // Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE) . Piscataway : IEEE Press , 2020 : 1591 - 1602 .
HU Y J , YAO Y , LEE W S . A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs [J ] . Knowledge-Based Systems , 2020 , 204 : 106244 .
KAEMPFER Y , WOLF L . Learning the multiple traveling salesmen problem with permutation invariant pooling networks [J ] . arXiv Preprint , arXiv: 1803.09621 , 2018 .
HU Y J , YAO Y , REN Q , et al . 3D multi-UAV cooperative velocity-aware motion planning [J ] . Future Generation Computer Systems , 2020 , 102 : 762 - 774 .
MA X B , JIAO Z Y , WANG Z K , et al . 3-D decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles [J ] . IEEE Transactions on Control Systems Technology , 2018 , 26 ( 3 ): 939 - 953 .
0
浏览量
109
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构