浏览全部资源
扫码关注微信
1.中国科学院信息工程研究所,北京 100085
2.中国科学院大学网络空间安全学院,北京 100049
3.网络空间安全防御重点实验室,北京 100085
[ "曹晓刚(1996- ),男,河北邢台人,中国科学院信息工程研究所博士生,主要研究方向为信息安全。" ]
[ "李凤华(1966- ),男,湖北浠水人,博士,中国科学院信息工程研究所研究员、博士生导师,主要研究方向为网络与系统安全、信息保护、隐私计算。" ]
[ "耿魁(1989- ),男,湖北红安人,博士,中国科学院信息工程研究所高级工程师、硕士生导师,主要研究方向为网络安全、信息保护。" ]
[ "李子孚(1992- ),女,内蒙古赤峰人,博士,中国科学院信息工程研究所高级工程师,主要研究方向为网络与系统安全。" ]
[ "寇文龙(1990- ),男,河南许昌人,中国科学院信息工程研究所工程师,主要研究方向为卫星互联网安全。" ]
收稿日期:2024-02-02,
修回日期:2024-03-11,
纸质出版日期:2024-07-25
移动端阅览
曹晓刚,李凤华,耿魁等.云环境下协同作业的密码服务优化调度算法[J].通信学报,2024,45(07):84-100.
CAO Xiaogang,LI Fenghua,GENG Kui,et al.Cryptographic service optimization scheduling algorithm for collaborative jobs in cloud environment[J].Journal on Communications,2024,45(07):84-100.
曹晓刚,李凤华,耿魁等.云环境下协同作业的密码服务优化调度算法[J].通信学报,2024,45(07):84-100. DOI: 10.11959/j.issn.1000-436x.2024083.
CAO Xiaogang,LI Fenghua,GENG Kui,et al.Cryptographic service optimization scheduling algorithm for collaborative jobs in cloud environment[J].Journal on Communications,2024,45(07):84-100. DOI: 10.11959/j.issn.1000-436x.2024083.
针对云环境下密码按需服务中多个计算作业协同服务的需求,提出了多密码作业协同服务的调度算法,能够充分应对密码算法种类多、并发需求高、作业随机交叉和作业负载瞬时激增等云环境下的新挑战。考虑每个密码计算作业之间的依赖关系、密码作业的完成时间需求以及密码计算单元的最大算力,以最小化能耗、迁移成本和瞬时激增负载的适应度为优化目标,将多密码作业协同服务调度问题建模为多目标优化的作业流调度问题,并提出“选择-排序”两阶段调度算法,在选择阶段,采用改进NSGA-III算法为密码计算作业选择合适的计算单元,在排序阶段,根据作业紧迫程度决定执行顺序。仿真结果表明,所提调度算法在能耗、迁移成本和对瞬时激增的作业负载的适应度方面优于传统调度算法。
In response to the demand for collaborative computation of multi-cryptographic jobs in cryptographic on-demand services within a cloud environment
a multi-cryptographic job collaborative scheduling algorithm was proposed. This algorithm effectively addressed new challenges in cloud environments
such as a variety of cryptographic algorithm types
high concurrency demands
random cross-job interactions
and sudden increases in workloads. Considering the dependencies among jobs
makespan of jobs and computational power of computing units
the scheduling problem for multi-cryptographic job collaborative service was modeled as a multi-objective optimization workflow scheduling problem. A two-stage “select-sort” scheduling algorithm was proposed. In the selection stage
the improved NSGA-III algorithm was employed to select computing units for cryptographic computing jobs
and in the sorting stage
the execution order was determined based on the urgency of jobs. Simulation results demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of energy consumption
migration costs
and adaptability to transient surges in loads.
BLEIKERTZ S , BUGIEL S , IDELER H , et al . Client-controlled cryptography-as-a-service in the cloud [C ] // Applied Cryptography and Network Security . Berlin : Springer , 2013 : 19 - 36 .
RAHMANI H , SUNDARARAJAN E , ALI Z M , et al . Encryption as a service (EaaS) as a solution for cryptography in cloud [J ] . Procedia Technology , 2013 , 11 : 1202 - 1210 .
Key management as a service (KMaaS) explained [R ] . 2023 .
张岳公 , 高志权 , 邵淼 , 等 . 云密码服务技术白皮书 [R ] . 2019 .
ZHANG Y G , GAO Z Q , SHAO M , et al . White paper on cloud cryptography service technology [R ] . 2019 .
Future Market Insights . Cloud encryption market outlook (2023 to 2033) [R ] . 2023 .
李建鹏 , 史国振 , 李莉 , 等 . 异构云环境中的实时密码服务调度策略 [J ] . 计算机工程 , 2019 , 45 ( 10 ): 1 - 7 .
LI J P , SHI G Z , LI L , et al . Scheduling strategy for real-time cipher service in heterogeneous cloud environment [J ] . Computer Engineering , 2019 , 45 ( 10 ): 1 - 7 .
孙德洋 , 娄嘉鹏 , 李建鹏 , 等 . 异构云环境下的密码服务调度方法 [J ] . 计算机应用与软件 , 2019 , 36 ( 6 ): 302 - 307, 333 .
SUN D Y , LOU J P , LI J P , et al . Cryptographic service scheduling method in heterogeneous cloud environment [J ] . Computer Applications and Software , 2019 , 36 ( 6 ): 302 - 307, 333 .
寇文龙 , 张宇阳 , 李凤华 , 等 . 密码服务资源按需高效调度方案 [J ] . 通信学报 , 2022 , 43 ( 6 ): 108 - 118 .
KOU W L , ZHANG Y Y , LI F H , et al . On-demand and efficient scheduling scheme for cryptographic service resource [J ] . Journal on Communications , 2022 , 43 ( 6 ): 108 - 118 .
NARAYANAN D , SANTHANAM K , KAZHAMIAKA F , et al . Heterogeneity-aware cluster scheduling policies for deep learning workloads [C ] // Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation . Berkeley : USENIX Association , 2020 : 481 - 498 .
XIAO W C , BHARDWAJ R , RAMJEE R , et al . Gandiva: introspective cluster scheduling for deep learning [C ] // Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation . Berkeley : USENIX Association , 2018 : 595 - 610 .
关川江 , 李建鹏 , 史国振 , 等 . 基于关联数据本地化的多密码作业流调度算法 [J ] . 计算机工程与科学 , 2020 , 42 ( 11 ): 1988 - 1995 .
GUAN C J , LI J P , SHI G Z , et al . A cloud cipher job stream scheduling algorithm based on associated data localization [J ] . Computer Engineering & Science , 2020 , 42 ( 11 ): 1988 - 1995 .
HUSSAIN M , WEI L F , REHMAN A , et al . Deadline-constrained energy-aware workflow scheduling in geographically distributed cloud data centers [J ] . Future Generation Computer Systems , 2022 , 132 ( C ): 211 - 222 .
LI X P , YU W , RUIZ R , et al . Energy-aware cloud workflow applications scheduling with geo-distributed data [J ] . IEEE Transactions on Services Computing , 2022 , 15 ( 2 ): 891 - 903 .
SUN T , XIAO C B , XU X J . A scheduling algorithm using sub-deadline for workflow applications under budget and deadline constrained [J ] . Cluster Computing , 2019 , 22 ( 3 ): 5987 - 5996 .
CHEN L , LI X P , RUIZ R . Idle block based methods for cloud workflow scheduling with preemptive and non-preemptive tasks [J ] . Future Generation Computer Systems , 2018 , 89 : 659 - 669 .
XIE Y , SHENG Y H , QIU M Q , et al . An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling [J ] . Engineering Applications of Artificial Intelligence , 2022 , 112 : 104879 .
ANWAR N , DENG H F . A hybrid metaheuristic for multi-objective scientific workflow scheduling in a cloud environment [J ] . Applied Sciences , 2018 , 8 ( 4 ): 538 .
CHOUDHARY A , GUPTA I , SINGH V , et al . A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing [J ] . Future Generation Computer Systems , 2018 , 83 : 14 - 26 .
VERMA A , KAUSHAL S . A hybrid multi-objective particle swarm optimization for scientific workflow scheduling [J ] . Parallel Computing , 2017 , 62 : 1 - 19 .
MOHAMMADZADEH A , MASDARI M . Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective optimization algorithm [J ] . Journal of Ambient Intelligence and Humanized Computing , 2023 , 14 ( 4 ): 3509 - 3529 .
YOU C Q . Hierarchical multi-resource fair queueing for network function virtualization [C ] // Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2019 : 406 - 414 .
CALZAROSSA M C , VEDOVA M L D , MASSARI L , et al . Multi-objective optimization of deadline and budget-aware workflow scheduling in uncertain clouds [J ] . IEEE Access , 2021 , 9 : 89891 - 89905 .
BELGACEM A , BEGHDAD-BEY K . Multi-objective workflow scheduling in cloud computing: trade-off between makespan and cost [J ] . Cluster Computing , 2022 , 25 ( 1 ): 579 - 595 .
GOH L K , VEERAVALLI B , VISWANATHAN S . Design of fast and efficient energy-aware gradient-based scheduling algorithms heterogeneous embedded multiprocessor systems [J ] . IEEE Transactions on Parallel and Distributed Systems , 2009 , 20 ( 1 ): 1 - 12 .
JING C , ZHU Y M , LI M L . Energy-efficient scheduling on multi-FPGA reconfigurable systems [J ] . Microprocessors & Microsystems , 2013 , 37 ( 6/7 ): 590 - 600 .
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints [J ] . IEEE Transactions on Evolutionary Computation , 2014 , 18 ( 4 ): 577 - 601 .
DAS I , DENNIS J E . Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems [J ] . SIAM Journal on Optimization , 1998 , 8 ( 3 ): 631 - 657 .
AL-SHARAEH S , WELLS B E . A comparison of heuristics for list schedules using the Box-method and P-method for random digraph generation [C ] // Proceedings of 28th Southeastern Symposium on System Theory . Piscataway : IEEE Press , 1996 : 467 - 471 .
WHILE L , HINGSTON P , BARONE L , et al . A faster algorithm for calculating hypervolume [J ] . IEEE Transactions on Evolutionary Computation , 2006 , 10 ( 1 ): 29 - 38 .
DEB K , GONDKAR A , ANIRUDH S . Learning to predict Pareto-optimal solutions from pseudo-weights [C ] // International Conference on Evolutionary Multi-Criterion Optimization . Berlin : Springer , 2023 : 191 - 204 .
ALAHMADI A , ALNOWISER A , ZHU M M , et al . Enhanced first-fit decreasing algorithm for energy-aware job scheduling in cloud [C ] // Proceedings of the 2014 International Conference on Computational Science and Computational Intelligence . Piscataway : IEEE Press , 2014 : 69 - 74 .
HAHNE E L . Round-robin scheduling for max-min fairness in data networks [J ] . IEEE Journal on Selected Areas in Communications , 1991 , 9 ( 7 ): 1024 - 1039 .
HSU C F , LIU C Y . An adaptive traffic-aware polling and scheduling algorithm for bluetooth piconets [J ] . IEEE Transactions on Vehicular Technology , 2010 , 59 ( 3 ): 1402 - 1414 .
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构