浏览全部资源
扫码关注微信
1.长沙理工大学计算机与通信工程学院,湖南 长沙 410114
2.长沙师范学院信息科学与工程学院,湖南 长沙 410199
3.国防科技大学计算机学院,湖南 长沙 410073
[ "熊兵(1981- ),男,湖南益阳人,博士,长沙理工大学副教授,主要研究方向为未来网络、网络测量、网络安全等。" ]
[ "赵锦元(1980- ),女,湖南邵阳人,博士,长沙师范学院副教授,主要研究方向为未来网络、网络测量、网络建模与优化等。" ]
[ "赵宝康(1981- ),男,湖北天门人,博士,国防科技大学副教授,主要研究方向为网络体系结构与协议、卫星互联网、高性能网络、网络安全等。" ]
[ "何施茗(1986- ),女,湖南永州人,博士,长沙理工大学副教授,主要研究方向为异常检测、矩阵分解、图网络与数据处理、无线网络。" ]
[ "张锦(1979- ),男,河南信阳人,博士,长沙理工大学教授,主要研究方向为人工智能、软件工程。" ]
收稿日期:2023-10-12,
修回日期:2024-02-19,
纸质出版日期:2024-05-30
移动端阅览
熊兵,袁月,赵锦元等.ADAFT:SDN大规模流表的适应性深度聚合存储架构[J].通信学报,2024,45(05):226-238.
XIONG Bing,YUAN Yue,ZHAO Jinyuan,et al.ADAFT:an storage architecture of large-scale SDN flow tables based on adaptive deep aggregations[J].Journal on Communications,2024,45(05):226-238.
熊兵,袁月,赵锦元等.ADAFT:SDN大规模流表的适应性深度聚合存储架构[J].通信学报,2024,45(05):226-238. DOI: 10.11959/j.issn.1000-436x.2024059.
XIONG Bing,YUAN Yue,ZHAO Jinyuan,et al.ADAFT:an storage architecture of large-scale SDN flow tables based on adaptive deep aggregations[J].Journal on Communications,2024,45(05):226-238. DOI: 10.11959/j.issn.1000-436x.2024059.
为解决软件定义网络(SDN)数据平面中的三态内容可寻址存储器(TCAM)资源紧张问题,提出了一种基于内容表项树的SDN流表深度聚合方法,进而构建一种SDN大规模流表的适应性深度聚合存储架构ADAFT。该架构放宽了聚合表项之间的汉明距离要求,构建内容表项树聚合动作集不同的流表项,显著提高了流表聚合程度。设计了一种TCAM装载率感知的内容表项树动态限高机制,以降低流表查找开销。同时,提出了一种TCAM装载率感知的表项聚合适应性选择策略,以均衡流表聚合程度和查找开销。实验结果表明,ADAFT架构的流表压缩率明显高于现有方法,最高可达65.74%。
To solve the problem of resource shortage of ternary content addressable memory (TCAM) in the data plane of software defined network (SDN)
a deep flow table aggregation method was proposed based on content entry trees
and a storage architecture of large-scale SDN flow tables named ADAFT was established. The architecture relaxed the Hamming distance requirement between ag-gregated flow entries
and a content entry tree was constructed to aggregate flow entries with different action sets
for significantly en-hancing the aggregation degree of flow tables. Then a dynamic limitation mechanism was designed for the height of content entry trees based on the awareness of TCAM load ratio
to minimize the lookup overhead of aggregated flow tables. Meanwhile
an adaptive selec-tion strategy of flow entry aggregation was presented in the light of TCAM load ratio
to strike a balance between the aggregation degree and lookup overhead of flow tables. Experimental results indicate that the ADAFT architecture achieves much higher flow table com-pression ratios up to 65.74% than existing methods.
NISAR K , JIMSON E R , HIJAZI M H A , et al . A survey on the architecture, application, and security of software defined networking: challenges and open issues [J ] . Internet of Things , 2020 , 12 ( 100289 ): 1 - 27 .
COSTA L C , VIEIRA A B , E SILVA E B , et al . OpenFlow data planes performance evaluation [J ] . Performance Evaluation , 2021 , 147 ( 102194 ): 1 - 23 .
SHIRMARZ A , GHAFFARI A . Performance issues and solutions in SDN-based data center: a survey [J ] . The Journal of Supercomputing , 2020 , 76 ( 10 ): 7545 - 7593 .
XU S Z , WANG X , YANG G X , et al . Routing optimization for cloud services in SDN-based Internet of Things with TCAM capacity constraint [J ] . Journal of Communications and Networks , 2020 , 22 ( 2 ): 145 - 158 .
LI Z Y , HU Y X . PASR: an efficient flow forwarding scheme based on segment routing in software-defined networking [J ] . IEEE Access , 2020 , 8 : 10907 - 10914 .
BABANGIDA I , SOPERI M Z M , MAZNAH B K , et al . Software defined networking flow table management of OpenFlow switches performance and security challenges: a survey [J ] . Future Internet , 2020 , 12 ( 9 ): 147 .
KANNAN K , BANERJEE S . Compact TCAM: flow entry compaction in TCAM for power aware SDN [C ] // International Conference on Distributed Computing and Networking (ICDCN) , Berlin : Springer , 2013 : 439 - 444 .
孙鹏浩 , 兰巨龙 , 陆肖元 , 等 . 一种基于匹配域裁剪的包分类规则集压缩方法 [J ] . 电子与信息学报 , 2017 , 39 ( 5 ): 1185 - 1192 .
SUN P H , LAN J L , LU X Y , et al . Field-trimming compression model for rule set of packet classification [J ] . Journal of Electronics & Information Technology , 2017 , 39 ( 5 ): 1185 - 1192 .
王孝龙 , 刘勤让 , 林森杰 , 等 . 基于独立规则集位提取的包分类压缩方法 [J ] . 计算机应用 , 2018 , 38 ( 8 ): 2375 - 2380 .
WANG X L , LIU Q R , LIN S J , et al . Compression method based on bit extraction of independent rule sets for packet classification [J ] . Journal of Computer Applications , 2018 , 38 ( 8 ): 2375 - 2380 .
WEI R H , XU Y , CHAO H J . Block permutations in Boolean space to minimize TCAM for packet classification [C ] // Proceedings of IEEE INFOCOM . Piscataway : IEEE Press , 2012 : 2561 - 2565 .
WANG C , YOUN H Y . Entry aggregation and early match using hidden Markov model of flow table in SDN [J ] . Sensors , 2019 , 19 ( 10 ): 2341 .
CHENG M H , HWANG W S , WU Y J , et al . An effective flow-rule-reducing algorithm for flow tables in software-defined networks [C ] // Proceedings of the 2020 International Computer Symposium (ICS) . Piscataway : IEEE Press , 2020 : 25 - 30 .
LIU A X , MEINERS C R , TORNG E . TCAM Razor: a systematic approach towards minimizing packet classifiers in TCAMs [J ] . IEEE/ACM Transactions on Networking , 2010 , 18 ( 2 ): 490 - 500 .
MEINERS C R , LIU A X , TORNG E . Bit Weaving: a non-prefix approach to compressing packet classifiers in TCAMs [J ] . IEEE/ACM Transactions on Networking , 2012 , 20 ( 2 ): 488 - 500 .
LUO S X , YU H F , LI L M . Fast incremental flow table aggregation in SDN [C ] // Proceedings of the 2014 23rd International Conference on Computer Communication and Networks (ICCCN) . Piscataway : IEEE Press , 2014 : 1 - 8 .
LUO S X , YU H F , LI L M . Practical flow table aggregation in SDN [J ] . Computer Networks , 2015 , 92 : 72 - 88 .
姜腊林 , 张亚南 , 熊兵 . 一种高效的OpenFlow流表拆分压缩算法 [J ] . 小型微型计算机系统 , 2018 , 39 ( 2 ): 310 - 314 .
JIANG L L , ZHANG Y N , XIONG B . An efficient OpenFlow stream table splitting compression algorithm [J ] . Journal of Chinese Computer Systems , 2018 , 39 ( 2 ): 310 - 314 .
RAHMAN M R . Mathematical study for reduction of variables in karnaugh map [C ] // Smart Computing and Informatics . Berlin : Springer , 2018 : 551 - 558 .
JARA L , GONZÁLEZ A , PÉREZ R . A preliminary study to apply the Quine McCluskey algorithm for fuzzy rule base minimization [C ] // Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) . Piscataway : IEEE Press , 2020 : 1 - 6 .
NUGROHO E D . Development of applications for simplification of Boolean functions using Quine-McCluskey method [J ] . Telematika , 2021 , 18 ( 1 ): 27 - 36 .
JOSHI M , SUNORI S K , TEWARI N , et al . Formulation of C++ program for Quine-McCluskey method of Boolean function minimization [C ] // International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC) . Berlin : Springer , 2022 : 341 - 346 .
ASHMOUNI E F , RAMADAN R A , RASHED A A . Espresso for rule mining [J ] . Procedia Computer Science , 2014 , 32 : 596 - 603 .
MCGEER R , YALAGANDULA P . Minimizing rulesets for TCAM implementation [C ] // Proceedings of the IEEE INFOCOM . Piscataway : IEEE Press , 2009 : 1314 - 1322 .
BRAUN W , MENTH M . Wildcard compression of inter-domain routing tables for OpenFlow-based software-defined networking [C ] // Proceedings of the 2014 Third European Workshop on Software Defined Networks . Piscataway : IEEE Press , 2014 : 25 - 30 .
WANG P , MCHALE L , GRATZ P V , et al . GenMatcher: a generic clustering-based arbitrary matching framework [J ] . ACM Transactions on Architecture and Code Optimization , 2018 , 15 ( 4 ): 51 .
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构