浏览全部资源
扫码关注微信
1.中国科学院上海微系统与信息技术研究所无线传感网与通信重点实验室,上海 200050
2.中国科学院大学,北京 101408
[ "沈斐(1983- ),女,江苏南京人,博士,中国科学院上海微系统与信息技术研究所研究员、博士生导师,主要研究方向为无线资源管理、边缘智能计算、卫星互联网、元宇宙技术。" ]
[ "吕承丞(1997- ),男,浙江金华人,中国科学院上海微系统与信息技术研究所博士生,主要研究方向为边缘智能计算、卫星互联网、网络优化。" ]
[ "张嘉璇(1999- ),男,河南洛阳人,中国科学院上海微系统与信息技术研究所博士生,主要研究方向为强化学习、边缘智能计算、无线通信。" ]
收稿日期:2023-11-08,
修回日期:2024-01-17,
纸质出版日期:2024-07-25
移动端阅览
沈斐,吕承丞,张嘉璇等.基于终端流量预测的低地球轨道卫星互联网资源分配策略[J].通信学报,2024,45(07):21-36.
SHEN Fei,LYU Chengcheng,ZHANG Jiaxuan,et al.LEO satellite Internet resource allocation strategy based on terminal traffic prediction[J].Journal on Communications,2024,45(07):21-36.
沈斐,吕承丞,张嘉璇等.基于终端流量预测的低地球轨道卫星互联网资源分配策略[J].通信学报,2024,45(07):21-36. DOI: 10.11959/j.issn.1000-436x.2024049.
SHEN Fei,LYU Chengcheng,ZHANG Jiaxuan,et al.LEO satellite Internet resource allocation strategy based on terminal traffic prediction[J].Journal on Communications,2024,45(07):21-36. DOI: 10.11959/j.issn.1000-436x.2024049.
针对地面网络存在覆盖盲区和卫星网络通信资源利用率低等问题,提出了基于终端流量预测的低地球轨道(LEO)卫星互联网资源分配策略。该策略利用真实数据集提出改进LSTM-ARIMA算法,准确预测地面区域未来一定时间内产生的数据流量,通过Stackelberg博弈构建差分化数据传输和任务卸载2种通信模型。综合考虑数据处理时延和能耗,通过求解纳什均衡,得到用户通过LEO卫星互联网传输数据或卸载任务的最优比率,以及卫星提供网络服务的最优定价。仿真结果表明,所提策略在数据传输服务中收益能提高约40%,在任务卸载服务中收益能提高约50%。
A resource allocation strategy for the low earth orbit (LEO) satellite Internet based on terminal traffic prediction was proposed to address the problems of blind coverage spots in ground network and the low resource utilization of satellite network. An improved LSTM-ARIMA algorithm was proposed with real datasets by the strategy to accurately predict the data traffic generated in the ground area over a certain period of time in the future. Two communication models
differentiated data transmission and task offloading were constructed through Stackelberg games
taking into the data processing latency and energy consumption account. By solving the Nash equilibrium
the optimal ratio for users to transmit data or unload tasks through the LEO satellite Internet
as well as the optimal pricing for satellites to provide network services
were obtained. Extensive simulation results verify that the proposed strategy can increase the revenue by approximately 40% in data transmission services and 50% in task offloading services.
ABDELSADEK M Y , CHAUDHRY A U , DARWISH T , et al . Future space networks: toward the next giant leap for humankind [J ] . IEEE Transactions on Communications , 2023 , 71 ( 2 ): 949 - 1007 .
ALHILAL A , BRAUD T , HUI P . The sky is NOT the limit anymore: future architecture of the interplanetary Internet [J ] . IEEE Aerospace and Electronic Systems Magazine , 2019 , 34 ( 8 ): 22 - 32 .
VILA-VALLS J , NAVARRO M , CLOSAS P , et al . Synchronization challenges in deep space communications [J ] . IEEE Aerospace and Electronic Systems Magazine , 2019 , 34 ( 1 ): 16 - 27 .
FOURATI F , ALOUINI M S . Artificial intelligence for satellite communication: a review [J ] . Intelligent and Converged Networks , 2021 , 2 ( 3 ): 213 - 243 .
KODHELI O , LAGUNAS E , MATURO N , et al . Satellite communications in the new space era: a survey and future challenges [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 70 - 109 .
LIU Y , JIANG L , QI Q , et al . Energy-efficient space-air-ground integrated edge computing for Internet of remote things: a federated DRL approach [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 6 ): 4845 - 4856 .
CHEN Y L , AI B , NIU Y , et al . Energy-constrained computation offloading in space-air-ground integrated networks using distributionally robust optimization [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 11 ): 12113 - 12125 .
LIAO H J , ZHOU Z Y , ZHAO X W , et al . Learning-based queue-aware task offloading and resource allocation for space-air-ground-integrated power IoT [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 7 ): 5250 - 5263 .
GONG Y K , YAO H P , WU D , et al . Computation offloading for rechargeable users in space-air-ground networks [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 3 ): 3805 - 3818 .
YU S , GONG X W , SHI Q , et al . EC-SAGINs: edge-computing-enhanced space-air-ground-integrated networks for Internet of vehicles [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 8 ): 5742 - 5754 .
CUI G F , DUAN P F , XU L X , et al . Latency optimization for hybrid GEO-LEO satellite-assisted IoT networks [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 7 ): 6286 - 6297 .
QIN Z Y , YAO H P , MAI T L , et al . Multi-agent reinforcement learning aided computation offloading in aerial computing for the Internet-of-things [J ] . IEEE Transactions on Services Computing , 2023 , 16 ( 3 ): 1976 - 1986 .
STHAPIT S , LAKSHMINARAYANA S , HE L G , et al . Reinforcement learning for security-aware computation offloading in satellite networks [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 14 ): 12351 - 12363 .
DING C F , WANG J B , CHENG M , et al . Dynamic transmission and computation resource optimization for dense LEO satellite assisted mobile-edge computing [J ] . IEEE Transactions on Communications , 2023 , 71 ( 5 ): 3087 - 3102 .
WAQAR N , ALI H S , MAHMOOD A , et al . Computation offloading and resource allocation in MEC-enabled integrated aerial-terrestrial vehicular networks: a reinforcement learning approach [J ] . IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 11 ): 21478 - 21491 .
JIA H G , JIANG C X , KUANG L L , et al . Adaptive random access and data transmission scheme with mixed traffic in NGSO satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 5 ): 6765 - 6777 .
WANG C Y , LIU L , MA H D , et al . A joint optimization scheme for hybrid MAC layer in LEO satellite supported IoT [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 15 ): 11822 - 11833 .
LU Y , ZHAO Y J , SUN F C , et al . Enhancing transmission efficiency of mega-constellation LEO satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 12 ): 13210 - 13225 .
CAO B , ZHANG J T , LIU X , et al . Edge-cloud resource scheduling in space-air-ground-integrated networks for Internet of vehicles [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 8 ): 5765 - 5772 .
TANG F X , WEN C , CHEN X H , et al . Federated learning for intelligent transmission with space-air-ground integrated network toward 6G [J ] . IEEE Network , 2023 , 37 ( 2 ): 198 - 204 .
ZHANG P Y , ZHANG Y , KUMAR N , et al . Dynamic SFC embedding algorithm assisted by federated learning in space-air-ground-integrated network resource allocation scenario [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 11 ): 9308 - 9318 .
ZHANG P Y , YANG P , KUMAR N , et al . Space-air-ground integrated network resource allocation based on service function chain [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 7 ): 7730 - 7738 .
ABDU T S , KISSELEFF S , LAGUNAS E , et al . Flexible resource optimization for GEO multibeam satellite communication system [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 12 ): 7888 - 7902 .
YUAN A F , XU Y L , ZHANG Q Y , et al . Optimal energy efficiency for relay selection via power allocation in L2 halo-orbital cislunar communication network [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 3 ): 3155 - 3170 .
CHEN X J , LI X M , WANG X W , et al . Task scheduling method for data relay satellite network considering breakpoint transmission [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 1 ): 844 - 857 .
LI J X , WU G H , LIAO T J , et al . Task scheduling under a novel framework for data relay satellite network via deep reinforcement learning [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 5 ): 6654 - 6668 .
ZHANG S H , CUI G F , WANG W D . Joint data downloading and resource management for small satellite cluster networks [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 1 ): 887 - 901 .
DAVARIAN F , ASMAR S , ANGERT M , et al . Improving small satellite communications and tracking in deep space-a review of the existing systems and technologies with recommendations for improvement. part II: small satellite navigation, proximity links, and communications link science [J ] . IEEE Aerospace and Electronic Systems Magazine , 2020 , 35 ( 7 ): 26 - 40 .
EL A S , RAMAMURTHY B . MARS: a multi-attribute routing and scheduling algorithm for DTN interplanetary networks [J ] . IEEE/ACM Transactions on Networking , 2020 , 28 ( 5 ): 2065 - 2076 .
CHONDRODIMA E , MANDALIS P , PELEKIS N , et al . Machine learning models for vessel route forecasting: an experimental comparison [C ] // Proceedings of the 2022 23rd IEEE International Conference on Mobile Data Management (MDM) . Piscataway : IEEE Press , 2022 : 262 - 269 .
ZHAN W H , LUO C B , MIN G Y , et al . Mobility-aware multi-user offloading optimization for mobile edge computing [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 3 ): 3341 - 3356 .
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构