浏览全部资源
扫码关注微信
1. 中央财经大学信息学院,北京 102206
2. 天津财经大学统计学院,天津 300222
[ "王友卫(1987- ),男,山东临沂人,博士,中央财经大学副教授、硕士生导师,主要研究方向为内容安全、深度学习、数据挖掘等" ]
[ "侯玉栋(2001- ),男,山西吕梁人,中央财经大学硕士生,主要研究方向为深度学习、区块链技术等" ]
[ "凤丽洲(1986- ),女,吉林长春人,博士,天津财经大学副教授、硕士生导师,主要研究方向为文本分析、数据挖掘等" ]
网络出版日期:2023-09,
纸质出版日期:2023-09-25
移动端阅览
王友卫, 侯玉栋, 凤丽洲. 基于源码结构和图注意力网络的以太坊蜜罐合约检测方法[J]. 通信学报, 2023,44(9):161-172.
Youwei WANG, Yudong HOU, Lizhou FENG. Honeypot contract detection method for Ethereum based on source code structure and graph attention network[J]. Journal on communications, 2023, 44(9): 161-172.
王友卫, 侯玉栋, 凤丽洲. 基于源码结构和图注意力网络的以太坊蜜罐合约检测方法[J]. 通信学报, 2023,44(9):161-172. DOI: 10.11959/j.issn.1000-436x.2023178.
Youwei WANG, Yudong HOU, Lizhou FENG. Honeypot contract detection method for Ethereum based on source code structure and graph attention network[J]. Journal on communications, 2023, 44(9): 161-172. DOI: 10.11959/j.issn.1000-436x.2023178.
针对目前蜜罐合约检测方法准确率不高以及泛化性较差等问题,提出了基于源码结构和图注意力网络的以太坊蜜罐合约检测(CSGDetector)方法。首先,为了提取出智能合约Solidity源码的结构信息,对源码进行语法分析,将其转换为XML解析树;然后,筛选出可以表达合约结构特征和内容特征的特征词集,并构造出合约源码结构图;最后,为避免数据集不平衡性带来的影响,在集成学习理论基础上引入教师模型和学生模型的概念,分别从全局和局部的角度训练图注意力网络模型,并融合所有模型的输出作为合约最终检测结果。实验表明,与已有方法KOLSTM相比,CSGDetector在二分类与多分类实验中的F
1
值分别提升了1.27%与7.21%,验证了其具有较高的蜜罐检测能力;与已有方法XGB相比,CSGDetector在掩蔽蜜罐检测实验中针对不同类型蜜罐合约的平均召回率提升了7.57%,验证了所提方法在提升算法泛化性能方面的有效性。
To address the problems of low accuracy and poor generalization of current honeypot contract detection methods
a honeypot contract detection method for Ethereum based on source code structure and graph attention network was proposed.Firstly
in order to extract the structural information of the Solidity source code of the smart contract
the source code was parsed and converted into an XML parsing tree.Then
a set of feature words that could express the structural and content characteristics of the contract was selected
and the contract source code structure graph was constructed.Finally
in order to avoid the impact of dataset imbalance
the concepts of teacher model and student model were introduced based on th
e ensemble learning theory.Moreover
the graph attention network model was trained from the global and local perspectives
respectively
and the outputs of all models were fused to obtain the final contract detection result.The experiments demonstrate that CSGDetector has higher honeypot detection capability than the existing method KOLSTM
with increments of 1.27% and 7.21% on F
1
measurement in two-class classification and multi-class classification experiments
respectively.When comparing with the existing method XGB
the average recall rate of CSGDetector in the masked honeypot detection experiments for different types of honeypot contracts is improved by 7.57%
which verifies the effectiveness of the method in improving the generalization performance of the algorithm.
HEWA T , YLIANTTILA M , LIYANAGE M . Survey on blockchain based smart contracts:applications,opportunities and challenges [J ] . Journal of Network and Computer Applications , 2021 ,177:102857.
WOOD G . Ethereum:a secure decentralised generalised transaction ledger [J ] . Ethereum Project Yellow Paper , 2014 , 151 ( 2014 ): 1 - 32 .
WANG S , YUAN Y , WANG X , et al . An overview of smart contract:architecture,applications,and future trends [C ] // Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV) . Piscataway:IEEE Press , 2018 : 108 - 113 .
ZHENG Z B , XIE S A , DAI H N . An overview on smart contracts:challenges,advances and platforms [J ] . Future Generation Computer Systems , 2020 , 105 : 475 - 491 .
CHRISTIDIS K , DEVETSIKIOTIS M . Blockchains and smart contracts for the Internet of things [J ] . IEEE Access , 2016 , 4 : 2292 - 2303 .
TORRES C F , STEICHEN M . The art of the scam:demystifying honeypots in Ethereum smart contracts [C ] // Proceedings of the 28th USENIX Security Symposium . Berkeley:USENIX Association , 2019 : 1591 - 1607 .
CAMINO R , TORRES C F , BADEN M , et al . A data science approach for detecting honeypots in Ethereum [C ] // Proceedings of 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) . Piscataway:IEEE Press , 2020 : 1 - 9 .
CHEN W L , GUO X F , CHEN Z G , et al . Honeypot contract risk warning on Ethereum smart contracts [C ] // Proceedings of 2020 IEEE International Conference on Joint Cloud Computing . Piscataway:IEEE Press , 2020 : 1 - 8 .
张红霞 , 王琪 , 王登岳 , 等 . 基于深度学习的区块链蜜罐陷阱合约检测 [J ] . 通信学报 , 2022 , 43 ( 1 ): 194 - 202 .
ZHANG H X , WANG Q , WANG D Y , et al . Honeypot contract detection of blockchain based on deep learning [J ] . Journal on Communications , 2022 , 43 ( 1 ): 194 - 202 .
冀甜甜 , 方滨兴 , 崔翔 , 等 . CADetector:跨家族的各项异性合约蜜罐检测 [J ] . 计算机学报 , 2022 , 45 ( 4 ): 877 - 895 .
JI T T , FANG B X , CUI X , et al . CADetector:cross-family anisotropic contract honeypot detection method [J ] . Chinese Journal of Computers , 2022 , 45 ( 4 ): 877 - 895 .
韩松明 , 梁彬 , 黄建军 , 等 . DC-Hunter:一种基于字节码匹配的危险智能合约检测方案 [J ] . 信息安全学报 , 2020 , 5 ( 3 ): 100 - 112 .
HAN S M , LIANG B , HUANG J J , et al . DC-hunter:detecting dangerous smart contracts via bytecode matching [J ] . Journal of Cyber Security , 2020 , 5 ( 3 ): 100 - 112 .
HUANG J J , HAN S M , YOU W , et al . Hunting vulnerable smart contracts via graph embedding based bytecode matching [J ] . IEEE Transactions on Information Forensics and Security , 2021 , 16 : 2144 - 2156 .
HU H W , BAI Q L , XU Y D . SCSGuard:deep scam detection for ethereum smart contracts [C ] // Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway:IEEE Press , 2022 : 1 - 6 .
TIKHOMIROV S , VOSKRESENSKAYA E , IVANITSKIY I , et al . SmartCheck:static analysis of Ethereum smart contracts [C ] // Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain . New York:ACM Press , 2018 : 9 - 16 .
WU Z H , PAN S R , CHEN F W , et al . A comprehensive survey on graph neural networks [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2021 , 32 ( 1 ): 4 - 24 .
VELIČKOVIĆ P , CUCURULL G , CASANOVA A , et al . Graph attention networks [J ] . arXiv Preprint,arXiv:1710.10903 , 2017 .
CHAWLA N V , BOWYER K W , HALL L O , et al . SMOTE:synthetic minority over-sampling technique [J ] . Journal of Artificial Intelligence Research , 2002 , 16 : 321 - 357 .
WEI J , ZOU K . EDA:easy data augmentation techniques for boosting performance on text classification tasks [C ] // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) . Stroudsburg:Association for Computational Linguistics , 2019 : 6382 - 6388 .
0
浏览量
372
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构