浏览全部资源
扫码关注微信
1. 南京信息工程大学计算机学院,江苏 南京 210044
2. 北京理工大学信息与电子学院,北京 100081
[ "李斌(1987- ),男,山东济宁人,博士,南京信息工程大学副教授、硕士生导师,主要研究方向为无人机通信、移动边缘计算等" ]
[ "彭思聪(2000- ),男,江苏盐城人,南京信息工程大学硕士生,主要研究方向为移动边缘计算、通感算一体化等" ]
[ "费泽松(1977- ),男,安徽合肥人,博士,北京理工大学教授、博士生导师,主要研究方向为无线通信、多媒体信号处理等" ]
网络出版日期:2023-09,
纸质出版日期:2023-09-25
移动端阅览
李斌, 彭思聪, 费泽松. 基于边缘计算的无人机通感融合网络波束成形与资源优化[J]. 通信学报, 2023,44(9):228-237.
Bin LI, Sicong PENG, Zesong FEI. Beamforming and resource optimization in UAV integrated sensing and communication network with edge computing[J]. Journal on communications, 2023, 44(9): 228-237.
李斌, 彭思聪, 费泽松. 基于边缘计算的无人机通感融合网络波束成形与资源优化[J]. 通信学报, 2023,44(9):228-237. DOI: 10.11959/j.issn.1000-436x.2023172.
Bin LI, Sicong PENG, Zesong FEI. Beamforming and resource optimization in UAV integrated sensing and communication network with edge computing[J]. Journal on communications, 2023, 44(9): 228-237. DOI: 10.11959/j.issn.1000-436x.2023172.
为了解决传统通信-感知融合网络模式对地面基础设施的依赖,针对复杂场景下通感融合网络系统功耗较大、信号阻塞、覆盖盲区等问题,提出了一种无人机搭载边缘计算服务器与雷达收发器辅助通感融合网络。首先,在满足用户传输功率、雷达估计信息率、任务卸载比例限制的条件下,通过联合优化无人机雷达波束成形、计算资源分配问题、任务卸载量划分、终端用户发射功率和无人机飞行轨迹,建立系统总能耗最小化问题;其次,将该非凸优化问题重新构建为一个马尔可夫决策过程,使用深度强化学习中的近端策略优化算法实现系统的优化决策。仿真结果表明,所提算法训练速度较快,能够在保证应用的感知与计算时延需求的同时有效降低系统能耗。
To address the dependence of traditional integrated sensing and communication network mode on ground infrastructure
the unmanned aerial vehicle (UAV) with edge computing server and radar transceiver was proposed to solve the problems of high-power consumption
signal blocking
and coverage blind spots in complex scenarios.Firstly
under the conditions of satisfying the user’s transmission power
radar estimation information rate and task offloading proportion limit
the system energy consumption was minimized by jointly optimizing UAV radar beamforming
computing resource allocation
task offloading
user transmission power
and UAV flight trajectory.Secondly
the non-convex optimization problem was reformulated as a Markov decision process
and the proximal policy optimization method based deep reinforcement learning was used to achieve the optimal solution.Simulation results show that the proposed algorithm has a faster training speed and can reduce the system energy consumption effectively while satisfying the sensing and computing delay requirements.
LETAIEF K B , SHI Y M , LU J M , et al . Edge artificial intelligence for 6G:vision,enabling technologies,and applications [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 40 ( 1 ): 5 - 36 .
ZHOU Y , LIU L , WANG L , et al . Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching [J ] . Digital Communications and Networks , 2020 , 6 ( 3 ): 253 - 260 .
LIU Y Q , PENG M G , SHOU G C , et al . Toward edge intelligence:multiaccess edge computing for 5G and Internet of things [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 8 ): 6722 - 6747 .
CHENG K J , FANG X M , WANG X B . Optimized resource allocation and time partitioning for integrated communication,sensing,and edge computing network [J ] . Computer Communications , 2022 , 194 : 240 - 249 .
WANG Z L , MU X D , LIU Y W , et al . NOMA-aided joint communication,sensing,and multi-tier computing systems [J ] . IEEE Journal on Selected Areas in Communications , 2023 , 41 ( 3 ): 574 - 588 .
YU Z Y , HU X L , LIU C X , et al . Location sensing and beamforming design for IRS-enabled multi-user ISAC systems [J ] . IEEE Transactions on Signal Processing , 2022 , 70 : 5178 - 5193 .
DO-DUY T , NGUYEN L D , DUONG T Q , et al . Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 11 ): 3411 - 3424 .
吴义豪 , 齐彦丽 , 周一青 , 等 . 通感算协同的无人机群轨迹规划与功率分配 [J ] . 西安电子科技大学学报 , 2023 , 50 ( 3 ): 61 - 74 .
WU Y H , QI Y L , ZHOU Y Q , et al . UAVs trajectory planning and power allocation based on the convergence of communication,sensing and computing [J ] . Journal of Xidian University , 2023 , 50 ( 3 ): 61 - 74 .
LIU B Y , WAN Y Y , ZHOU F H , et al . Resource allocation and trajectory design for MISO UAV-assisted MEC networks [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 5 ): 4933 - 4948 .
LU W D , DING Y , GAO Y , et al . Secure NOMA-based UAV-MEC network towards a flying eavesdropper [J ] . IEEE Transactions on Communications , 2022 , 70 ( 5 ): 3364 - 3376 .
WANG D , TIAN J , ZHANG H X , et al . Task offloading and trajectory scheduling for UAV-enabled MEC networks:an optimal transport theory perspective [J ] . IEEE Wireless Communications Letters , 2022 , 11 ( 1 ): 150 - 154 .
GAN Y H , HE Y J . Trajectory optimization and computing offloading strategy in UAV-assisted MEC system [C ] // Proceedings of 2021 Computing,Communications and IoT Applications (ComComAp) . Piscataway:IEEE Press , 2021 : 132 - 137 .
JEONG S , SIMEONE O , KANG J . Mobile edge computing via a UAV-mounted cloudlet:optimization of bit allocation and path planning [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 3 ): 2049 - 2063 .
HUANG N , WANG T S , WU Y , et al . Integrated sensing and communication assisted mobile edge computing:an energy-efficient design via intelligent reflecting surface [J ] . IEEE Wireless Communications Letters , 2022 , 11 ( 10 ): 2085 - 2089 .
QI Q , CHEN X M , KHALILI A , et al . Integrating sensing,computing,and communication in 6G wireless networks:design and optimization [J ] . IEEE Transactions on Communications , 2022 , 70 ( 9 ): 6212 - 6227 .
DING C F , WANG J B , ZHANG H , et al . Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 7 ): 2085 - 2102 .
ZHAO L D , WU D , ZHOU L , et al . Radio resource allocation for integrated sensing,communication,and computation networks [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 10 ): 8675 - 8687 .
QI Y L , ZHOU Y Q , LIU Y F , et al . Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 24 ): 17762 - 17777 .
HUA M , WU Q Q , CHEN W , et al . Secure intelligent reflecting surface aided integrated sensing and communication [J ] . IEEE Transactions on Wireless Communications , 2023 , PP ( 99 ): 1 .
CHIRIYATH A R , PAUL B , JACYNA G M , et al . Inner bounds on performance of radar and communications co-existence [J ] . IEEE Transactions on Signal Processing , 2015 , 64 ( 2 ): 464 - 474 .
PENG H X , SHEN X M . Multi-agent reinforcement learning based resource management in MEC-and UAV-assisted vehicular networks [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 1 ): 131 - 141 .
ZHAO N , YE Z Y , PEI Y Y , et al . Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 9 ): 6949 - 6960 .
LIANG J B , ZHANG H H , JIANG C , et al . Research progress of task offloading based on deep reinforcement learning in mobile edge computing [J ] . Computer Science , 2021 , 48 ( 7 ): 316 - 323 .
ENGSTROM L , ILYAS A , SANTURKAR S , et al . Implementation matters in deep policy gradients:a case study on PPO and TRPO [J ] . arXiv Preprint,arXiv:2005.12729 , 2020 .
0
浏览量
293
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构