浏览全部资源
扫码关注微信
福州大学福建省媒体信息智能处理与无线传输重点实验室,福建 福州 350001
[ "房颖(1981- ),女,福建福州人,博士,福州大学讲师,主要研究方向为多媒体通信、计算机触觉" ]
[ "徐艺文(1976- ),男,福建漳州人,博士,福州大学教授、硕士生导师,主要研究方向为媒体信息智能处理与传输" ]
[ "赵铁松(1984- ),男,河北衡水人,博士,福州大学教授、博士生导师,主要研究方向为多媒体通信、计算机视觉、计算机触觉等" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-25
移动端阅览
房颖, 徐艺文, 赵铁松. 面向机器识别-人类感知的联合振动触觉编码[J]. 通信学报, 2023,44(5):42-51.
Ying FANG, Yiwen XU, Tiesong ZHAO. Joint vibrotactile coding for machine recognition and human perception[J]. Journal on communications, 2023, 44(5): 42-51.
房颖, 徐艺文, 赵铁松. 面向机器识别-人类感知的联合振动触觉编码[J]. 通信学报, 2023,44(5):42-51. DOI: 10.11959/j.issn.1000-436x.2023099.
Ying FANG, Yiwen XU, Tiesong ZHAO. Joint vibrotactile coding for machine recognition and human perception[J]. Journal on communications, 2023, 44(5): 42-51. DOI: 10.11959/j.issn.1000-436x.2023099.
为了精确地传输信号内容含义,实现智能识别与信号重建,针对振动触觉信号,提出了一种面向机器识别-人类感知的联合编码方案。在编码端,将三维振动信号转化为一维信号,采用短时傅里叶变换提取信号的语义信息,并实现语义信息高效压缩与表征。在解码端,基于语义信息采用全卷积神经网络实现触觉的智能识别;同时,将原始信号与基于语义信息的重构信号的残差值作为语义信息的补偿,逐步提高重构信号的质量,满足人类感知需求。实验结果表明,所提方案用较低比特率的语义信息实现触觉识别,同时在满足人类感知需求情况下,触觉数据的压缩效率有所提高。
In order to accurately transmit the content meaning of vibrotactile signals and achieve intelligent recognition and signal reconstruction
a joint vibrotactile coding scheme for machine recognition and human perception was proposed.At the encoding end
the original three-dimensional vibrotactile signals were converted into one-dimensional signals.Then the semantic information of the signals was extracted using a short-time Fourier transform before being effectively compressed and transmitted.At the decoding end
a fully convolutional neural network was used to intelligently recognize based on the semantic information.The difference between the original signals and the reconstructed signals based on semantic information was used as compensation for the semantic information
and the quality of the reconstructed signals was gradually improved to meet human perceptual needs.The experimental results show that the proposed scheme achieve tactile recognition with semantic information at a lower bit rate while improving the compression efficiency of tactile data
thus satisfying human perceptual needs.
HUANG H , HSIEH M H . Tactile emotional coding:the perceptual linking of vibrotactile stimuli with basic emotions [C ] // Proceedings of 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII) . Piscataway:IEEE Press , 2020 : 134 - 137 .
ANTONAKOGLOU K , XU X , STEINBACH E , et al . Toward haptic communications over the 5G tactile Internet [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 3034 - 3059 .
XU X , CIZMECI B , SCHUWERK C , et al . Haptic data reduction for time-delayed teleoperation using the time domain passivity approach [C ] // Proceedings of 2015 IEEE World Haptics Conference (WHC) . Piscataway:IEEE Press , 2015 : 512 - 518 .
STEINBACH E , STRESE M , EID M , et al . Haptic codecs for the tactile Internet [J ] . Proceedings of the IEEE , 2019 , 107 ( 2 ): 447 - 470 .
刘传宏 , 郭彩丽 , 杨洋 , 等 . 面向智能任务的语义通信:理论、技术和挑战 [J ] . 通信学报 , 2022 , 43 ( 6 ): 41 - 57 .
LIU C H , GUO C L , YANG Y , et al . Intelligent task-oriented semantic communications:theory,technology and challenges [J ] . Journal on Communications , 2022 , 43 ( 6 ): 41 - 57 .
DUAN L Y , LIU J Y , YANG W H , et al . Video coding for machines:a paradigm of collaborative compression and intelligent analytics [J ] . IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society , 2020 , 29 : 8680 - 8695 .
HU Y Y , YANG S , YANG W H , et al . Towards coding for human and machine vision:a scalable image coding approach [C ] // Proceedings of 2020 IEEE International Conference on Multimedia and Expo (ICME) . Piscataway:IEEE Press , 2020 : 1 - 6 .
LIU K , LIU D , LI L , et al . Semantics-to-signal scalable image compression with learned revertible representations [J ] . International Journal of Computer Vision , 2021 , 129 ( 9 ): 2605 - 2621 .
CHOI H , BAJIĆ I V . Scalable image coding for humans and machines [J ] . IEEE Transactions on Image Processing , 2022 , 31 : 2739 - 2754 .
HUANG Z M , JIA C M , WANG S S , et al . HMFVC:a human-machine friendly video compression scheme [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2022 ,doi:10.1109/TCSVT.2022.3207596.
XIA S F , LIANG K , YANG W H , et al . An emerging coding paradigm vcm:a scalable coding approach beyond feature and signal [C ] // Proceedings of 2020 IEEE International Conference on Multimedia and Expo (ICME) . Piscataway:IEEE Press , 2020 : 1 - 6 .
LIU X , DOHLER M . A data-driven approach to vibrotactile data compression [C ] // Proceedings of 2019 IEEE International Workshop on Signal Processing Systems (SiPS) . Piscataway:IEEE Press , 2020 : 341 - 346 .
CHAUDHARI R , SCHUWERK C , DANAEI M , et al . Perceptual and bitrate-scalable coding of haptic surface texture signals [J ] . IEEE Journal of Selected Topics in Signal Processing , 2015 , 9 ( 3 ): 462 - 473 .
OKAMOTO S , YAMADA Y . Perceptual properties of vibrotactile material texture:effects of amplitude changes and stimuli beneath detection thresholds [C ] // Proceedings of 2010 IEEE/SICE International Symposium on System Integration . Piscataway:IEEE Press , 2011 : 384 - 389 .
HASSEN R , GÜLECYÜZ B , STEINBACH E . PVC-SLP:perceptual vibrotactile-signal compression based-on sparse linear prediction [J ] . IEEE Transactions on Multimedia , 2021 , 23 : 4455 - 4468 .
NOLL A , NOCKENBERG L , GÜLECYÜZ B , et al . VC-PWQ:vibrotactile signal compression based on perceptual wavelet quantization [C ] // Proceedings of 2021 IEEE World Haptics Conference (WHC) . Piscataway:IEEE Press , 2021 : 427 - 432 .
KIRSCH J , NOLL A , STRESE M , et al . A low-cost acquisition,display,and evaluation setup for tactile codec development [C ] // Proceedings of 2018 IEEE International Symposium on Haptic,Audio and Visual Environments and Games (HAVE) . Piscataway:IEEE Press , 2018 : 1 - 6 .
LANDIN N , ROMANO J M , MCMAHAN W , et al . Dimensional reduction of high-frequency accelerations for haptic rendering [C ] // International Conference on Human Haptic Sensing and Touch Enabled Computer Applications . Berlin:Springer , 2010 : 79 - 86 .
李昂 , 陈建新 , 魏昕 , 等 . 面向6G的跨模态信号重建技术 [J ] . 通信学报 , 2022 , 43 ( 6 ): 28 - 40 .
LI ANG , CHEN J X , WEI X , et al . 6G-oriented cross-modal signal reconstruction technology [J ] . Journal on Communications , 2022 , 43 ( 6 ): 28 - 40 .
SAJEEVAN N , ARATHI N M , ARAVIND S R , et al . Surface material classification using acceleration signal [C ] // Proceedings of International Conference on Communication and Computational Technologies . Berlin:Springer , 2021 : 49 - 58 .
ZHENG H T , FANG L , JI M Q , et al . Deep learning for surface material classification using haptic and visual information [J ] . IEEE Transactions on Multimedia , 2016 , 18 ( 12 ): 2407 - 2416 .
XIAO J Q , ZHOU Z Y . Research progress of RNN language model [C ] // Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) . Piscataway:IEEE Press , 2020 : 1285 - 1288 .
WANG Z G , YAN W Z , OATES T . Time series classification from scratch with deep neural networks:a strong baseline [C ] // Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN) . Piscataway:IEEE Press , 2017 : 1578 - 1585 .
HASSEN R , STEINBACH E . Subjective evaluation of the spectral temporal SIMilarity (ST-SIM) measure for vibrotactile quality assessment [J ] . IEEE Transactions on Haptics , 2020 , 13 ( 1 ): 25 - 31 .
JI M Q , FANG L , ZHENG H T , et al . Preprocessing-free surface material classification using convolutional neural networks pretrained by sparse autoencoder [C ] // Proceedings of 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP) . Piscataway:IEEE Press , 2015 : 1 - 6 .
0
浏览量
323
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构