浏览全部资源
扫码关注微信
1. 西安电子科技大学人工智能学院, 陕西 西安 710071
2. 鹏城实验室,广东 深圳 518055
3. 琶洲实验室,广东 广州 510555
[ "石光明(1965- ),男,江西南昌人,博士,西安电子科技大学教授,主要研究方向为人工智能、语义通信等" ]
[ "杨旻曦(1996- ),男,四川成都人,西安电子科技大学博士生,主要研究方向为表征学习、计算机视觉、语义通信等" ]
[ "高大化(1979- ),男,河南开封人,博士,西安电子科技大学教授,主要研究方向为智能信息处理、智能感知等" ]
[ "柴靖轩(1996– ),男,河南郑州人,西安电子科技大学博士生,主要研究方向为知识图谱推理、语义通信、信息论等" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-25
移动端阅览
石光明, 杨旻曦, 高大化, 等. 面向语义信息直传的通信架构[J]. 通信学报, 2023,44(5):15-27.
Guangming SHI, Minxi YANG, Dahua GAO, et al. Communication framework for directed transmission of informative semantic[J]. Journal on communications, 2023, 44(5): 15-27.
石光明, 杨旻曦, 高大化, 等. 面向语义信息直传的通信架构[J]. 通信学报, 2023,44(5):15-27. DOI: 10.11959/j.issn.1000-436x.2023098.
Guangming SHI, Minxi YANG, Dahua GAO, et al. Communication framework for directed transmission of informative semantic[J]. Journal on communications, 2023, 44(5): 15-27. DOI: 10.11959/j.issn.1000-436x.2023098.
随着聚焦提升带宽和频谱效率的传统通信发展模式渐入瓶颈,越来越多的研究将智能通信的目标从语法层转向语义层,通过感知并传输语义而非完整信号来节省带宽资源。信宿端智能体只需接收可理解语义中有信息部分即可。若能在信源端从语义角度中甄别出对信宿端有信息的部分加以传输,将进一步降低带宽资源和信宿端语义信息处理的时间和功耗。为此,首先探讨了智能体的语义信息处理和理解的过程,并将信宿从信息中感知到的语义划分为冗余语义、难以理解语义(暗语义)和有信息的语义(语信);接着,提出了面向传输语义中有信息的部分的通信范式——语信通信,并将通信范式划分为语法、语义、语信、语用四层;最后,通过仿真实验验证了语信通信的可行性和有效性。这为下一代通信范式的发展提供了新思路和技术牵引。
As the traditional communication development model focusing on enhancing bandwidth and spectrum efficiency is getting bottlenecked
more and more research is shifting the goal of intelligent communication from the syntactic level to the semantic level to save bandwidth resources by sensing and transmitting semantics rather than the complete signal.For the receiver agent
it is enough to receive only the information part of the understandable semantics.If the informative parts from the semantics can be filtered for transmission
it will further reduce the bandwidth resources and the time and power consumption of semantic information processing at the sender-side.To this end
firstly
the process of semantic information processing and comprehension of an intelligent body was explored.Secondly
the semantics perceived by the receiver from the message were classified into redundant semantics
unintelligible semantics
and informative semantic.Then
a communication paradigm oriented to transmitting the informative part of the semantics
called informative communication
was proposed
and the communication paradigm was extended to include four layers: syntax
semantic
informative
and pragmatic.Finally
the feasibility and effectiveness of informative communication were verified through simulation.This provides new ideas and technical traction for the development of next-generation communication models.
SHANNON C E , WEAVER W . The mathematical theory of communication [M ] . Urbana : University of Illinois Press , 1949 .
VORA L J . Evolution of mobile generation technology:1G to 5G and review of upcoming wireless technology 5G [J ] . International journal of modern trends in engineering and research , 2015 , 2 ( 10 ): 281 - 290 .
ARIKAN E . Channel polarization:a method for constructing capacity-achieving codes [C ] // Proceedings of 2008 IEEE International Symposium on Information Theory . Piscataway:IEEE Press , 2008 : 1173 - 1177 .
SHI G M , XIAO Y , LI Y Y , et al . From semantic communication to semantic-aware networking:model,architecture,and open problems [J ] . IEEE Communications Magazine , 2021 , 59 ( 8 ): 44 - 50 .
石光明 , 李莹玉 , 谢雪梅 . 语义通讯:智能时代的产物 [J ] . 模式识别与人工智能 , 2018 , 31 ( 1 ): 91 - 99 .
SHI G M , LI Y Y , XIE X M . Semantic communications:outcome of the intelligence era [J ] . Pattern Recognition and Artificial Intelligence , 2018 , 31 ( 1 ): 91 - 99 .
SHI G M , GAO D H , SONG X D , et al . A new communication paradigm:from bit accuracy to semantic fidelity [J ] . arXiv Preprint,arXiv:2101.12649 , 2021 .
QIN Z , TAO X , LU J , et al . Semantic communications:principles and challenges [J ] . arXiv Preprint,arXiv:2201.01389 , 2022 .
XIE H Q , QIN Z J , LI G Y , et al . Deep learning enabled semantic communication systems [J ] . IEEE Transactions on Signal Processing , 2021 , 69 : 2663 - 2675 .
WENG Z Z , QIN Z J , LI G Y . Semantic communications for speech signals [C ] // Proceedings of IEEE International Conference on Communications . Piscataway:IEEE Press , 2021 : 1 - 6 .
YOO H , JUNG T , DAI L , et al . Demo:real-time semantic communications with a vision transformer [J ] . arXiv Preprint,arXiv:2205.03886 , 2022 .
LI J G , JIA C M , ZHANG X F , et al . Cross modal compression:towards human-comprehensible semantic compression [C ] // Proceedings of the 29th ACM International Conference on Multimedia . New York:ACM Press , 2021 : 4230 - 4238 .
HUANG D L , TAO X M , GAO F F , et al . Deep learning-based image semantic coding for semantic communications [C ] // Proceedings of IEEE Global Communications Conference (GLOBECOM) . Piscataway:IEEE Press , 2022 : 1 - 6 .
HARTLEY R V L . Transmission of information [J ] . The Bell System Technical Journal , 1928 , 7 ( 3 ): 535 - 563 .
RICHARDS A G , ASHBY W R . An introduction to cybernetics [J ] . AIBS Bulletin , 1957 , 7 ( 1 ): 41 .
LONGO G . Information theory new trends and open problems [M ] . Vienna : Springer Vienna , 1975 .
钟义信 . 信息科学原理 [M ] . 福州 : 福建人民出版社 , 1988 .
ZHONG Y X . Principles of information science [M ] . Fuzhou : Fujian People’s Publishing House , 1988 .
LOWE D G . Distinctive image features from scale-invariant keypoints [J ] . International Journal of Computer Vision , 2004 , 60 ( 2 ): 91 - 110 .
CRANDALL D , FELZENSZWALB P , HUTTENLOCHER D . Spatial priors for part-based recognition using statistical models [C ] // Pro ceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2005 : 10 - 17 .
LOSCH M , FRITZ M , SCHIELE B . Interpretability beyond classification output:semantic bottleneck networks [J ] . arXiv Preprint,arXiv:1907.10882 , 2019 .
JI Z L , ZOU X L , LIU X , et al . Neural information processing in hierarchical prototypical networks [C ] // International Conference on Neural Information Processing . Berlin:Springer , 2018 : 603 - 611 .
SHI G M , ZHANG Z Q , GAO D H , et al . Knowledge-guided semantic computing network [J ] . Neurocomputing , 2021 , 426 : 70 - 84 .
SHI G M , YANG M X , GAO D H . A novel intrinsically explainable model with semantic manifolds established via transformed priors [J ] . Knowledge-Based Systems , 2022 ,252:109386.
石光明 , 高大化 , 杨旻曦 , 等 . 信号的语义刻画与度量 [J ] . 电子学报 , 2022 , 50 ( 9 ): 2068 - 2078 .
SHI G M , GAO D H , YANG M X , et al . Semantic characterization and measurement of signals [J ] . Acta Electronica Sinica , 2022 , 50 ( 9 ): 2068 - 2078 .
KRISHNA R , ZHU Y K , GROTH O , et al . Visual genome:connecting language and vision using crowdsourced dense image annotations [J ] . International Journal of Computer Vision , 2017 , 123 ( 1 ): 32 - 73 .
XU D F , ZHU Y K , CHOY C B , et al . Scene graph generation by iterative message passing [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 3097 - 3106 .
LIN T Y , MAIRE M , BELONGIE S , et al . Microsoft COCO:common objects in context [C ] // European Conference on Computer Vision . Berlin:Springer , 2014 : 740 - 755 .
KRAUSE J , JOHNSON J , KRISHNA R , et al . A hierarchical approach for generating descriptive image paragraphs [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 3337 - 3345 .
DEVLIN J , CHANG M , LEE K , et al . BERT:pre-training of deep bidirectional transformers for language understanding [J ] . arXiv Preprint,arXiv:1810.04805 , 2018 .
TANG K H , NIU Y L , HUANG J Q , et al . Unbiased scene graph generation from biased training [C ] // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 : 3713 - 3722 .
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks [J ] . arXiv preprint arXiv:1609.02907 , 2016 .
O’SHEA T , HOYDIS J . An introduction to deep learning for the physical layer [J ] . IEEE Transactions on Cognitive Communications and Networking , 2017 , 3 ( 4 ): 563 - 575 .
ESSER P , ROMBACH R , OMMER B . Taming transformers for high-resolution image synthesis [C ] // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2021 : 12868 - 12878 .
KUZNETSOVA A , ROM H , ALLDRIN N , et al . The open images dataset v4 [J ] . International Journal of Computer Vision , 2020 , 128 ( 7 ): 1956 - 1981 .
LESKOVEC J , KLEINBERG J , FALOUTSOS C . Graph evolution:densification and shrinking diameters [J ] . ACM Transactions on Knowledge Discovery from Data , 2007 , 1 ( 1 ): 1 - 42 .
WANG H W , WANG J L , WANG J , et al . Learning graph representation with generative adversarial nets [J ] . IEEE Transactions on Knowledge and Data Engineering , 2021 , 33 ( 8 ): 3090 - 3103 .
0
浏览量
398
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构