浏览全部资源
扫码关注微信
1. 贵州大学公共大数据国家重点实验室,贵州 贵阳 550025
2. 贵州大学计算机科学与技术学院,贵州 贵阳 550025
3. 贵州大学密码学与数据安全研究所,贵州 贵阳 550025
4. 贵州大学大数据与信息工程学院,贵州 贵阳 550025
[ "田有亮(1982- ),男,贵州盘州人,博士,贵州大学教授、博士生导师,主要研究方向为博弈论、密码学与安全协议、大数据隐私保护" ]
[ "吴柿红(1995- ),女,贵州福泉人,贵州大学硕士生,主要研究方向为联邦学习、密码学等" ]
[ "李沓(1998- ),男,贵州盘州人,贵州大学博士生,主要研究方向为密码学与区块链技术" ]
[ "王林冬(1997- ),男,浙江杭州人,贵州大学硕士生,主要研究方向为数字水印、信息安全等" ]
[ "周骅(1978- ),男,江苏无锡人,博士,贵州大学副教授、硕士生导师,主要研究方向为物联网安全、硬件安全机制、电路与系统" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-25
移动端阅览
田有亮, 吴柿红, 李沓, 等. 基于激励机制的联邦学习优化算法[J]. 通信学报, 2023,44(5):169-180.
Youliang TIAN, Shihong WU, Ta LI, et al. Federated learning optimization algorithm based on incentive mechanism[J]. Journal on communications, 2023, 44(5): 169-180.
田有亮, 吴柿红, 李沓, 等. 基于激励机制的联邦学习优化算法[J]. 通信学报, 2023,44(5):169-180. DOI: 10.11959/j.issn.1000-436x.2023095.
Youliang TIAN, Shihong WU, Ta LI, et al. Federated learning optimization algorithm based on incentive mechanism[J]. Journal on communications, 2023, 44(5): 169-180. DOI: 10.11959/j.issn.1000-436x.2023095.
针对联邦学习的训练过程迭代次数多、训练时间长、效率低等问题,提出一种基于激励机制的联邦学习优化算法。首先,设计与时间和模型损失相关的信誉值,基于该信誉值,设计激励机制激励拥有高质量数据的客户端加入训练。其次,基于拍卖理论设计拍卖机制,客户端通过向雾节点拍卖本地训练任务,委托高性能雾节点训练本地数据从而提升本地训练效率,解决客户端间的性能不均衡问题。最后,设计全局梯度聚合策略,增加高精度局部梯度在全局梯度中的权重,剔除恶意客户端,从而减少模型训练次数。
Federated learning optimization algorithm based on incentive mechanism was proposed to address the issues of multiple iterations
long training time and low efficiency in the training process of federated learning.Firstly
the reputation value related to time and model loss was designed.Based on the reputation value
an incentive mechanism was designed to encourage clients with high-quality data to join the training.Secondly
the auction mechanism was designed based on the auction theory.By auctioning local training tasks to the fog node
the client entrusted the high-performance fog node to train local data
so as to improve the efficiency of local training and solve the problem of performance imbalance between clients.Finally
the global gradient aggregation strategy was designed to increase the weight of high-precision local gradient in the global gradient and eliminate malicious clients
so as to reduce the number of model training.
GE Z Q , SONG Z H , DING S X , et al . Data mining and analytics in the process industry:the role of machine learning [J ] . IEEE Access , 2017 , 5 : 20590 - 20616 .
MOHASSEL P , ZHANG Y P . Secure ML:a system for scalable privacy-preserving machine learning [C ] // Proceedings of 2017 IEEE Symposium on Security and Privacy (SP) . Piscataway:IEEE Press , 2017 : 19 - 38 .
ZHANG Y , XU C X , LI H W , et al . HealthDep:an efficient and secure deduplication scheme for cloud-assisted eHealth systems [J ] . IEEE Transactions on Industrial Informatics , 2018 , 14 ( 9 ): 4101 - 4112 .
AHISKA K , OZGOREN M K , LEBLEBICIOGLU M K . Autopilot design for vehicle cornering through icy roads [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 3 ): 1867 - 1880 .
YANG Q , LIU Y , CHEN T J , et al . Federated machine learning:concept and applications [J ] . ACM Transactions on Intelligent Systems and Technology , 2019 , 10 ( 2 ): 1 - 19 .
PANDEY S R , TRAN N H , BENNIS M , et al . A crowdsourcing framework for on-device federated learning [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 5 ): 3241 - 3256 .
ZHAN Y F , LI P , QU Z H , et al . A learning-based incentive mechanism for federated learning [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 7 ): 6360 - 6368 .
LIU J , WANG J H , PONG C , et al . FedPA:an adaptively partial model aggregation strategy in Federated Learning [J ] . Computer Networks , 2021 ,199:108468.
MCMAHAN H B , MOORE E , RAMAGE D , et al . Communication-efficient learning of deep networks from decentralized data [J ] . arXiv Preprint,arXiv:1602.05629 , 2016 .
BONOMI F , MILITO R , ZHU J , et al . Fog computing and its role in the Internet of things [C ] // Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing . New York:ACM Press , 2012 : 13 - 16 .
LI Y J , TAO X F , ZHANG X F , et al . Privacy-preserved federated learning for autonomous driving [J ] . IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 7 ): 8423 - 8434 .
KIM H , PARK J , BENNIS M , et al . Blockchained on-device federated learning [J ] . IEEE Communications Letters , 2020 , 24 ( 6 ): 1279 - 1283 .
陈明鑫 , 张钧波 , 李天瑞 . 联邦学习攻防研究综述 [J ] . 计算机科学 , 2022 , 49 ( 7 ): 310 - 323 .
CHEN M X , ZHANG J B , LI T R . Survey on attacks and defenses in federated learning [J ] . Computer Science , 2022 , 49 ( 7 ): 310 - 323 .
LI Y P , COURCOUBETIS C , DUAN L J . Recommending paths:follow or not follow? [C ] // Proceedings of IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2019 : 928 - 936 .
KANG J W , XIONG Z H , NIYATO D , et al . Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 6 ): 10700 - 10714 .
ZENG R F , ZHANG S X , WANG J Q , et al . FMore:an incentive scheme of multi-dimensional auction for federated learning in MEC [C ] // Proceedings of 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS) . Piscataway:IEEE Press , 2021 : 278 - 288 .
DENG Y H , LYU F , REN J , et al . FAIR:quality-aware federated learning with precise user incentive and model aggregation [C ] // Proceedings of IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2021 : 1 - 10 .
LIAN X R , HUANG Y J , LI Y C , et al . Asynchronous parallel stochastic gradient for nonconvex optimization [C ] // Proceedings of the 28th International Conference on Neural Information Processing Systems . New York:ACM Press , 2015 : 2737 - 2745 .
DAI W , KUMAR A , WEI J L , et al . High-performance distributed ML at scale through parameter server consistency models [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2015 : 79 - 87 .
NIU F , RECHT B , RE C , et al . HOGWILD!:a lock-free approach to parallelizing stochastic gradient descent [J ] . Advances in Neural Information Processing Systems , 2011 , 24 : 693 - 701 .
NISHIO T , YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge [C ] // Proceedings of 2019 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2019 : 1 - 7 .
余佳仁 , 田有亮 , 林晖 . 基于信誉管理模型的矿工类型鉴别机制设计 [J ] . 网络与信息安全学报 , 2022 , 8 ( 1 ): 128 - 138 .
YU J R , TIAN Y L , LIN H . Design of miner type identification mechanism based on reputation management model [J ] . Chinese Journal of Network and Information Security , 2022 , 8 ( 1 ): 128 - 138 .
王勇 , 李国良 , 李开宇 . 联邦学习贡献评估综述 [J ] . 软件学报 , 2023 , 34 ( 3 ): 1168 - 1192 .
WANG Y , LI G L , LI K Y . Survey on contribution evaluation for federated learning [J ] . Journal of Software , 2023 , 34 ( 3 ): 1168 - 1192 .
XU G W , LI H W , LIU S , et al . VerifyNet:secure and verifiable federated learning [J ] . IEEE Transactions on Information Forensics and Security , 2020 , 15 : 911 - 926 .
WANG S Q , TUOR T , SALONIDIS T , et al . When edge meets learning:adaptive control for resource-constrained distributed machine learning [C ] // Proceedings of IEEE 2018 IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2018 : 63 - 71 .
ZHENG S Y , CAO Y , YOSHIKAWA M . Incentive mechanism for privacy-preserving federated learning [J ] . arXiv Preprint,arXiv:2106.04384 , 2021 .
MIAO Y B , LIU Z T , LI H W , et al . Privacy-preserving Byzantine-robust federated learning via blockchain systems [J ] . IEEE Transactions on Information Forensics and Security , 2022 , 17 : 2848 - 2861 .
XIONG L , LIU L . PeerTrust:supporting reputation-based trust for peer-to-peer electronic communities [J ] . IEEE Transactions on Knowledge and Data Engineering , 2004 , 16 ( 7 ): 843 - 857 .
HUANG C Y , WANG Z Y , CHEN H X , et al . RepChain:a reputation-based secure,fast,and high incentive blockchain system via sharding [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 6 ): 4291 - 4304 .
TRAN N H , BAO W , ZOMAYA A , et al . Federated learning over wireless networks:optimization model design and analysis [C ] // Proceedings of 2019 IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2019 : 1387 - 1395 .
ABDALI T A N , HASSAN R , AMAN A H M , et al . Fog computing advancement:concept,architecture,applications,advantages,and open issues [J ] . IEEE Access , 2021 , 9 : 75961 - 75980 .
ZHOU C Y , FU A M , YU S , et al . Privacy-preserving federated learning in fog computing [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 11 ): 10782 - 10793 .
WAN C B , JIN F S , QIAO Z , et al . Unsupervised active learning with loss prediction [J ] . Neural Computing and Applications , 2023 , 35 ( 5 ): 3587 - 3595 .
FU A M , ZHANG X L , XIONG N X , et al . VFL:a verifiable federated learning with privacy-preserving for big data in industrial IoT [J ] . IEEE Transactions on Industrial Informatics , 2022 , 18 ( 5 ): 3316 - 3326 .
0
浏览量
716
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构