浏览全部资源
扫码关注微信
西安电子科技大学超高速电路设计与电磁兼容教育部重点实验室,陕西 西安 710071
[ "刘海霞(1976– ),女,河北秦皇岛人,博士,西安电子科技大学副教授,主要研究方向为智能超材料、电路分析、无线能量传输与收集、场路协同设计" ]
[ "易浩(1988– ),男,湖南常德人,西安电子科技大学博士生,主要研究方向为毫米波雷达天线、超表面天线" ]
[ "马向进(1998– ),男,安徽阜阳人,西安电子科技大学博士生,主要研究方向为可编程超表面及其新体制雷达系统" ]
[ "乐舒瑶(1997– ),女,四川成都人,西安电子科技大学硕士生,主要研究方向为毫米波阵列天线、部分有源可重构反射阵" ]
[ "孔旭东(1997– ),男,甘肃平凉人,西安电子科技大学硕士生,主要研究方向为基于电磁超材料的电磁波调控、毫米波阵列天线优化设计" ]
[ "马培(1995– ),女,河南南阳人,西安电子科技大学硕士生,主要研究方向为吸波、透波一体化的频率选择表面的设计" ]
[ "曾宇鑫(1998– ),男,广东揭阳人,西安电子科技大学硕士生,主要研究方向为基于电磁超材料的电磁波调控、多频数字编码可重构超表面设计" ]
[ "李龙(1977– ),男,贵州安顺人,博士,西安电子科技大学教授,主要研究方向为智能超表面、超材料天线与微波器件、无线能量传输与收集、微波集成电路的电磁兼容与防护" ]
网络出版日期:2022-12,
纸质出版日期:2022-12-25
移动端阅览
刘海霞, 易浩, 马向进, 等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022,43(12):32-44.
Haixia LIU, Hao YI, Xiangjin MA, et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on communications, 2022, 43(12): 32-44.
刘海霞, 易浩, 马向进, 等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022,43(12):32-44. DOI: 10.11959/j.issn.1000-436x.2022229.
Haixia LIU, Hao YI, Xiangjin MA, et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on communications, 2022, 43(12): 32-44. DOI: 10.11959/j.issn.1000-436x.2022229.
可重构智能超表面(RIS)是一种新型人工电磁材料,可灵活调控电磁波的频率、幅度、相位、极化、传播方向、波形等特性。在无线通信领域,可利用RIS重构无线通信信道,实现无线信号的盲区覆盖,提高通信质量。首先,概述了RIS技术的发展和研究现状,分析了RIS的关键技术和应用场景。然后,提出了一种新型无源RIS,通过无源编码和拼接原理实现了RIS口径可重构和波束可重构特性,具有低成本、低功耗、低复杂度的优点。最后,在实际室内环境下进行了基于无源RIS的室内无线信号盲区覆盖增强实验。通过仿真与实测对比,证明了无源可拼接超表面在无线通信补盲场景应用中的有效性。此外,针对5G/6G毫米波通信,设计了双层十字交叉振子无源RIS,应用到室内典型的L形走廊场景,验证了无源RIS对室内无线信号覆盖的增强效果。
Reconfigurable intelligent metasurface (RIS) is a new type of artificial electromagnetic metamaterial
which can control the frequency
amplitude
phase
polarization
propagation direction and wave type of electromagnetic wave flexibly.In the field of wireless communication
RIS can be used to reconstruct the wireless communication channel to achieve blind coverage of wireless signals and improve the communication quality.First
the development and research status of RIS
the key technologies and application scenarios of RIS were summarized and analyzed.Then
a new passive RIS was proposed to realize the characteristics of the aperture reconfiguration and beam reconfiguration through passive coding and splicing principle
which had the advantages of low cost
low power consumption and low complexity.Finally
the blind area coverage enhancement experiment of indoor wireless signal based on passive reflection metasurface was carried out.The effectiveness of passive splicing metasurface in wireless communication blind coverage scenarios was proved by comparison between simulation and field measurement.In addition
for 5G/6G millimeter wave communication
the passive RIS with double-layer cross dipole elements was designed and applied to typical indoor L-shaped corridor scene to verify the enhancement effect of indoor wireless signal coverage.
BOCCARDI F , HEATH R W , LOZANO A , et al . Five disruptive technology directions for 5G [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 74 - 80 .
WU Q Q , LI G Y , CHEN W , et al . An overview of sustainable green 5G networks [J ] . IEEE Wireless Communications , 2017 , 24 ( 4 ): 72 - 80 .
ZHANG R , HO C K . MIMO broadcasting for simultaneous wireless information and power transfer [J ] . IEEE Transactions on Wireless Communications , 2013 , 12 ( 5 ): 1989 - 2001 .
LYU J B , ZHANG R . Hybrid active/passive wireless network aided by intelligent reflecting surface:system modeling and performance analysis [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 11 ): 7196 - 7212 .
RENZO M D , NTONTIN K , SONG J , et al . Reconfigurable intelligent surfaces vs.relaying:differences,similarities,and performance comparison [J ] . IEEE Open Journal of the Communications Society , 2020 , 1 : 798 - 807 .
TAWALBEH M , KHAN H A , HAJAR A A , et al . Applications of metamaterials [J ] . Reference Module in Materials Science and Materials Engineering , 2022 , 3 ( 2 ): 11 - 24 .
CUI T J , QI M Q , WAN X , et al . Coding metamaterials,digital metamaterials and programmable metamaterials [J ] . Light:Science & Applications , 2014 , 3 ( 10 ): e218 .
PAN S P , FENG Y , QI L , et al . Design of dual-band frequency reconfigurable microstrip antenna array [C ] // Proceedings of 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC) . Piscataway:IEEE Press , 2020 : 1 - 3 .
NISHAMOL M S , SARIN V P , TONY D , et al . An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity [J ] . IEEE Transactions on Antennas and Propagation , 2011 , 59 ( 9 ): 3424 - 3427 .
GUCLU C , PERRUISSEAU-CARRIER J , CIVI O . Proof of concept of a dual-band circularly-polarized RF MEMS beam-switching reflectarray [J ] . IEEE Transactions on Antennas and Propagation , 2012 , 60 ( 11 ): 5451 - 5455 .
LI L , LI Y J , WU Z , et al . Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces [J ] . Proceedings of the IEEE , 2015 , 103 ( 7 ): 1057 - 1070 .
崔铁军 , 金石 , 章嘉懿 , 等 . 智能超表面技术研究报告 [R ] . 2021 .
CUI T J , JIN S , ZHANG J Y , et al . The research report of reconfigurable intelligent metasurface technology [R ] . 2021 .
LI L , CHEN Q , YUAN Q , et al . Microstrip reflectarray using crossed-dipole with frequency selective surface of loops [C ] // Proceedings of 2008 International Symposium on Antennas and Propagation (ISAP2008) . Piscataway:IEEE Press , 2008 : 1 - 4 .
LI L , CHEN Q , YUAN Q W , et al . Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications [J ] . IEEE Antennas and Wireless Propagation Letters , 2009 , 8 : 881 - 885 .
LI L , CHEN Q , YUAN Q W , et al . Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications [J ] . IEEE Transactions on Antennas and Propagation , 2011 , 59 ( 1 ): 89 - 99 .
WU Q Q , ZHANG R . Intelligent reflecting surface enhanced wireless network:joint active and passive beamforming design [C ] // Proceedings of 2018 IEEE Global Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
NEMATI M , PARK J , CHOI J . RIS-assisted coverage enhancement in millimeter-wave cellular networks [J ] . IEEE Access , 2020 , 8 : 188171 - 188185 .
LU Z Q , FANG Y , YI H , et al . Broadband reflectarray for millimeter wave coverage enhancement in indoor NLOS scenario [C ] // Proceedings of 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) . Piscataway:IEEE Press , 2019 : 1 - 3 .
李双德 , 刘芫健 , 林乐科 . 28 GHz室内毫米波信道路径损耗模型研究 [J ] . 电波科学学报 , 2017 , 32 ( 5 ): 602 - 611 .
LI S D , LIU Y J , LIN Y K . Path loss models of millimeter-wave channel in indoor environment at 28GHz [J ] . Chinese Journal of Radio Science , 2017 , 32 ( 5 ): 602 - 611 .
DORST L , FONTIJNE D , MANN S . Geometric Algebra for Computer Science [M ] . Amsterdam : Elsevier , 2007 .
TIAN S C , ZHANG X M , WANG X , et al . Recent advances in metamaterials for simultaneous wireless information and power transmission [J ] . Nanophotonics , 2022 , 11 ( 9 ): 1697 - 1723 .
ZHOU J F , ZHANG P , HAN J Q , et al . Metamaterials and metasurfaces for wireless power transfer and energy harvesting [J ] . Proceedings of the IEEE , 2022 , 110 ( 1 ): 31 - 55 .
李龙 , 张沛 , 韩家奇 , 等 . 基于电磁超材料的微波无线能量传输与收集关键技术(特邀) [J ] . 光子学报 , 2021 , 50 ( 10 ): 11 - 26 .
LI L , ZHANG P , HAN J Q , et al . Key technologies of microwave wireless power transfer and energy harvesting based on electromagnetic metamaterials(invited) [J ] . Acta Photonica Sinica , 2021 , 50 ( 10 ): 11 - 26 .
0
浏览量
318
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构