浏览全部资源
扫码关注微信
青岛科技大学信息科学技术学院,山东 青岛 266061
[ "陈卓(1978− ),女,山东青岛人,博士,青岛科技大学副教授、硕士生导师,主要研究方向为自然语言处理、推荐系统等" ]
[ "朱淼(1998− ),女,安徽六安人,青岛科技大学硕士生,主要研究方向为图神经网络、异常检测等" ]
[ "杜军威(1974−),男,山东威海人,博士,青岛科技大学教授、博士生导师,主要研究方向为数据挖掘、知识图谱与知识工程等" ]
网络出版日期:2022-11,
纸质出版日期:2022-11-25
移动端阅览
陈卓, 朱淼, 杜军威. 基于多视角图神经网络的欺诈检测算法[J]. 通信学报, 2022,43(11):225-232.
Zhuo CHEN, Miao ZHU, Junwei DU. Multi-view graph neural network for fraud detection algorithm[J]. Journal on communications, 2022, 43(11): 225-232.
陈卓, 朱淼, 杜军威. 基于多视角图神经网络的欺诈检测算法[J]. 通信学报, 2022,43(11):225-232. DOI: 10.11959/j.issn.1000-436x.2022221.
Zhuo CHEN, Miao ZHU, Junwei DU. Multi-view graph neural network for fraud detection algorithm[J]. Journal on communications, 2022, 43(11): 225-232. DOI: 10.11959/j.issn.1000-436x.2022221.
针对欺诈检测领域样本标签不平衡、欺诈节点之间缺乏必要连接,导致欺诈检测任务不符合图神经网络同质性假设的问题,提出了基于多视角图神经网络的欺诈检测(MGFD)算法。首先,利用结构无关的编码器对网络中节点进行属性编码,以学习欺诈节点与正常节点之间的差异,使用层次注意力机制对网络中多视角信息进行融合,在学习差异的基础上充分利用网络中不同视角之间的交互信息对节点进行建模;然后,基于数据不平衡比采样子图,依据欺诈节点连接特性构建样本进行分类学习,解决样本标签不平衡的问题;最后,预测标签判别节点是否为欺诈节点。在公开数据集上的实验表明,MGFD算法在基于图的欺诈检测领域检测效果优于对比方法。
Aiming at the problem that in the field of fraud detection
imbalance labels and lack of necessary connections between fraud nodes
resulting in fraud detection tasks not conforming to the hypothesis of homogeneity of graph neural networks
multi-view graph neural network for fraud detection (MGFD) algorithm was proposed.First
A structure-independent encoder was used to encode the attributes of nodes in the network to learn the difference between the fraud node and the normal node.The hierarchical attention mechanism was designed to integrate the multi-view information in the network
and made full use of the interaction information between different perspectives in the network to model the nodes on the basis of learning differences.Then
based on the data imbalance ratio sampled subgraph
the sample was constructed according to the connection characteristics of fraud nodes for classification
which solved the problem of imbalance sample labels.Finally
the prediction label was used to identify whether a node is fraudulent.Experiments on real-world datasets have shown that the MGFD algorithm outperforms the comparison method in the field of graph-based fraud detection.
朱会娟 , 陈锦富 , 李致远 , 等 . 基于多特征自适应融合的区块链异常交易检测方法 [J ] . 通信学报 , 2021 , 42 ( 5 ): 41 - 50 .
ZHU H J , CHEN J F , LI Z Y , et al . Block-chain abnormal transaction detection method based on adaptive multi-feature fusion [J ] . Journal on Communications , 2021 , 42 ( 5 ): 41 - 50 .
POURHABIBI T , ONG K L , KAM B H , et al . Fraud detection:a systematic literature review of graph-based anomaly detection approaches [J ] . Decision Support Systems , 2020 ,133:113303.
ZHANG G , WU J , YANG J , et al . FRAUDRE:fraud detection dual-resistant to graph inconsistency and imbalance [C ] // Proceedings of IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2021 : 867 - 876 .
WANG D X , LIN J B , CUI P , et al . A semi-supervised graph attentive network for financial fraud detection [C ] // Proceedings of IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2019 : 598 - 607 .
MCAULEY J J , LESKOVEC J . From amateurs to connoisseurs:modeling the evolution of user expertise through online reviews [C ] // Proceedings of the 22nd International Conference on World Wide Web . New York:ACM Press , 2013 : 897 - 908 .
LIU Z , DOU Y , YU P S , et al . Alleviating the inconsistency problem of applying graph neural network to fraud detection [C ] // Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval . New York:ACM Press , 2020 : 1569 - 1572 .
DOU Y T , LIU Z W , SUN L , et al . Enhancing graph neural network-based fraud detectors against camouflaged fraudsters [C ] // Proceedings of the 29th ACM International Conference on Information &Knowledge Management . New York:ACM Press , 2020 : 315 - 324 .
陈晋音 , 张敦杰 , 黄国瀚 , 等 . 面向图神经网络的对抗攻击与防御综述 [J ] . 网络与信息安全学报 , 2021 , 7 ( 3 ): 28 .
CHEN J Y , ZHANG D J , HUANG G H , et al . Adversarial attack and defense on graph neural networks:a survey [J ] . Chinese Journal of Network and Information Security , 2021 , 7 ( 3 ): 28 .
MA J , ZHANG D , WANG Y , et al . GraphRAD:a graph-based risky account detection system [C ] // Proceedings of ACM SIGKDD Conference . New York:ACM Press , 2018 :9
BIAN T , XIAO X , XU T , et al . Rumor detection on social media with bi-directional graph convolutional networks [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2020 : 549 - 556 .
LI A , QIN Z , LIU R S , et al . Spam review detection with graph convolutional networks [C ] // Proceedings of the 28th ACM International Conference on Information and Knowledge Management . New York:ACM Press , 2019 : 2703 - 2711 .
CHAWLA N V , BOWYER K W , HALL L O , et al . SMOTE:synthetic minority over-sampling technique [J ] . Journal of Artificial Intelligence Research , 2002 , 16 : 321 - 357 .
WANG W , WANG S , FAN W , et al . Global-and-local aware data generation for the class imbalance problem [C ] // Proceedings of the 2020 SIAM International Conference on Data Mining . Philadelphia:Society for Industrial and Applied Mathematics , 2020 : 307 - 315 .
CHI J F , ZENG G X , ZHONG Q W , et al . Learning to undersampling for class imbalanced credit risk forecasting [C ] // Proceedings of IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2020 : 72 - 81 .
CAO K , WEI C , GAIDON A , et al . Learning imbalanced datasets with label-distribution-aware margin loss [C ] // Proceedings of the 33rd International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2019 : 1567 - 1578 .
HU Z , TAN B , SALAKHUTDINOV R R , et al . Learning data manipulation for augmentation and weighting [C ] // Proceedings of the 33rd International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2019 :32.
SHI M , TANG Y F , ZHU X Q , et al . Multi-class imbalanced graph convolutional network learning [C ] // Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence . San Francisco:Margan Kaufmann , 2020 : 2879 - 2885 .
ZHAO T X , ZHANG X , WANG S H . GraphSMOTE:imbalanced node classification on graphs with graph neural networks [C ] // Proceedings of the 14th ACM International Conference on Web Search and Data Mining . New York:ACM Press , 2021 : 833 - 841 .
TONG H H , FALOUTSOS C , PAN J Y . Fast random walk with restart and its applications [C ] // Proceedings of the Sixth International Conference on Data Mining . Piscataway:IEEE Press , 2006 : 613 - 622 .
RAYANA S , AKOGLU L . Collective opinion spam detection:bridging review networks and metadata [C ] // Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2015 : 985 - 994 .
WELLING M , KIPF T N . Semi-supervised classification with graph convolutional networks [J ] . arXiv Preprint,arXiv:1609.02907 , 2016 .
WANG J Y , WEN R , WU C M , et al . FDGars:fraudster detection via graph convolutional networks in online APP review system [C ] // Proceedings of the 22nd International Conference on World Wide Web . New York:ACM Press , 2019 : 310 - 316 .
0
浏览量
687
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构