浏览全部资源
扫码关注微信
1. 山东科技大学电子信息工程学院,山东 青岛 266590
2. 中国科学院上海微系统与信息技术研究所,上海 200050
[ "陈赓(1984− ),男,山东潍坊人,博士,山东科技大学副教授、硕士生导师,主要研究方向为异构网络、泛在网络和软件定义移动网络、无线资源管理和优化算法" ]
[ "齐书虎(1998− ),男,山东聊城人,山东科技大学硕士生,主要研究方向为网络切片、资源分配" ]
[ "沈斐(1983− ),女,江苏南京人,博士,中国科学院上海微系统与信息技术研究所研究员、博士生导师,主要研究方向为无线通信、边缘计算和雾计算的资源优化" ]
[ "曾庆田(1976− ),男,山东潍坊人,博士,山东科技大学教授、博士生导师,主要研究方向为Petri网、过程挖掘和知识管理" ]
网络出版日期:2022-11,
纸质出版日期:2022-11-25
移动端阅览
陈赓, 齐书虎, 沈斐, 等. 面向B5G多业务场景基于D3QN的双时间尺度网络切片算法[J]. 通信学报, 2022,43(11):213-224.
Geng CHEN, Shuhu QI, Fei SHEN, et al. Dual time scale network slicing algorithm based on D3QN for B5G multi-service scenarios[J]. Journal on communications, 2022, 43(11): 213-224.
陈赓, 齐书虎, 沈斐, 等. 面向B5G多业务场景基于D3QN的双时间尺度网络切片算法[J]. 通信学报, 2022,43(11):213-224. DOI: 10.11959/j.issn.1000-436x.2022207.
Geng CHEN, Shuhu QI, Fei SHEN, et al. Dual time scale network slicing algorithm based on D3QN for B5G multi-service scenarios[J]. Journal on communications, 2022, 43(11): 213-224. DOI: 10.11959/j.issn.1000-436x.2022207.
为了有效满足不同切片的差异化服务质量需求,面向B5G多业务场景提出了一种基于竞争双深度Q网络(D3QN)的双时间尺度网络切片算法。研究了联合资源切片和调度问题,以归一化处理后的频谱效率和不同切片用户服务质量指数的加权和作为优化目标。在大时间尺度内,SDN控制器根据每种业务的资源需求利用D3QN算法预先分配给不同的切片,然后根据基站负载状态执行基站级资源更新。在小时间尺度内,基站通过轮询调度算法将资源调度到终端用户。仿真结果表明,所提算法在保证切片用户服务质量需求、频谱效率和系统效用方面具有优异的性能。与其他4种基准算法相比,所提算法的系统效用分别提升了3.22%、3.81%、7.48%和21.14%。
To effectively meet the differentiated quality of service (QoS) requirements of different slices
a dual time scale network slicing resource allocation algorithm based on dueling double DQN (D3QN) was proposed for B5G multi-service scenarios.The joint resource slicing and scheduling problem was formulated
with the weighted sum of the normalized spectral efficiency (SE) and the QoS of users indices of different slices as the optimization objective.On large time scale
the SDN controller used the D3QN algorithm to pre-allocate resources to different slices based on the resource requirements of each service
and then performed BS-level resource updating based on the load status of BS.On small time scale
the BS scheduled resources to end-users by using the round-robin scheduling algorithm.The simulation results show that the proposed algorithm has excellent performance in ensuring the QoS requirements of slice users
SE and system utility.Compared with the other 4 baseline algorithms
the system utility is improved by 3.22%
3.81%
7.48% and 21.14%
respectively.
DOGRA A , JHA R K , JAIN S . A survey on beyond 5G network with the advent of 6G:architecture and emerging technologies [J ] . IEEE Access , 2021 , 9 : 67512 - 67547 .
MLIKA Z , CHERKAOUI S . Massive IoT access with NOMA in 5G networks and beyond using online competitiveness and learning [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 17 ): 13624 - 13639 .
ELAYOUBI S E , JEMAA S B , ALTMAN Z , et al . 5G RAN slicing for verticals:enablers and challenges [J ] . IEEE Communications Magazine , 2019 , 57 ( 1 ): 28 - 34 .
FILALI A , ABOUAOMAR A , CHERKAOUI S , et al . Multi-access edge computing:a survey [J ] . IEEE Access , 2020 , 8 : 197017 - 197046 .
SHU Z G , TALEB T . A novel QoS framework for network slicing in 5G and beyond networks based on SDN and NFV [J ] . IEEE Network , 2020 , 34 ( 3 ): 256 - 263 .
HUA Y X , LI R P , ZHAO Z F , et al . GAN-powered deep distributional reinforcement learning for resource management in network slicing [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 2 ): 334 - 349 .
LI R P , WANG C J , ZHAO Z F , et al . The LSTM-based advantage actor-critic learning for resource management in network slicing with user mobility [C ] // Proceedings of IEEE Communications Letters . Piscataway:IEEE Press , 2020 : 2005 - 2009 .
FILALI A , MLIKA Z , CHERKAOUI S , et al . Dynamic SDN-based radio access network slicing with deep reinforcement learning for URLLC and eMBB services [J ] . IEEE Transactions on Network Science and Engineering , 2022 , 9 ( 4 ): 2174 - 2187 .
SUN G L , XIONG K , BOATENG G O , et al . Autonomous resource provisioning and resource customization for mixed traffics in virtualized radio access network [J ] . IEEE Systems Journal , 2019 , 13 ( 3 ): 2454 - 2465 .
SHAO Y , LI R P , HU B , et al . Graph attention network-based multi-agent reinforcement learning for slicing resource management in dense cellular network [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 10 ): 10792 - 10803 .
ABIKO Y , SAITO T , IKEDA D , et al . Flexible resource block allocation to multiple slices for radio access network slicing using deep reinforcement learning [J ] . IEEE Access , 2020 , 8 : 68183 - 68198 .
YANG G , LIU Q , ZHOU X W , et al . Two-tier resource allocation in dynamic network slicing paradigm with deep reinforcement learning [C ] // Proceedings of 2019 IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
WU H Q , CHEN J Y , ZHOU C H , et al . Learning-based joint resource slicing and scheduling in space-terrestrial integrated vehicular networks [J ] . Journal of Communications and Information Networks , 2021 , 6 ( 3 ): 208 - 223 .
SHI W S , LI J L , YANG P , et al . Two-level soft RAN slicing for customized services in 5G-and-beyond wireless communications [J ] . IEEE Transactions on Industrial Informatics , 2022 , 18 ( 6 ): 4169 - 4179 .
PAPA A , JANO A , AYVAŞIK S , et al . User-based quality of service aware multi-cell radio access network slicing [J ] . IEEE Transactions on Network and Service Management , 2022 , 19 ( 1 ): 756 - 768 .
HU J Z , ZHENG Z J , DI B Y , et al . Multi-layer radio network slicing for heterogeneous communication systems [J ] . IEEE Transactions on Network Science and Engineering , 2020 , 7 ( 4 ): 2378 - 2391 .
SUN Y , QIN S , FENG G , et al . Service provisioning framework for RAN slicing:user admissibility,slice association and bandwidth allocation [J ] . IEEE Transactions on Mobile Computing , 2021 , 20 ( 12 ): 3409 - 3422 .
ZHAO N , LIANG Y C , NIYATO D , et al . Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 11 ): 5141 - 5152 .
孙国林 , 欧睿杰 , 刘贵松 . 基于深度强化学习的应急物联网切片资源预留算法 [J ] . 通信学报 , 2020 , 41 ( 9 ): 8 - 20 .
SUN G L , OU R J , LIU G S . Deep reinforcement learning-based resource reservation algorithm for emergency Internet-of-things slice [J ] . Journal on Communications , 2020 , 41 ( 9 ): 8 - 20 .
亓伟敬 , 宋清洋 , 郭磊 . 面向软件定义多模态车联网的双时间尺度RAN切片资源分配 [J ] . 通信学报 , 2022 , 43 ( 4 ): 60 - 70 .
QI W J , SONG Q Y , GUO L . Dual time scale resource allocation for RAN slicing in software-defined oriented polymorphic IoV [J ] . Journal on Communications , 2022 , 43 ( 4 ): 60 - 70 .
喻鹏 , 张俊也 , 李文璟 , 等 . 移动边缘网络中基于双深度 Q 学习的高能效资源分配方法 [J ] . 通信学报 , 2020 , 41 ( 12 ): 148 - 161 .
YU P , ZHANG J Y , LI W J , et al . Energy-efficient resource allocation method in mobile edge network based on double deep Q-learning [J ] . Journal on Communications , 2020 , 41 ( 12 ): 148 - 161 .
3GPP . Further advancements for E-UTRA physical layer aspects:TR36.814 (V9.0.0) [S ] . 2010 .
3GPP . Service requirements for 5G system (Release 15):TS 22.261 V18.3.0 [S ] . 2021 .
SUN G L , XIONG K , BOATENG G O , et al . Resource slicing and customization in RAN with dueling deep Q-network [J ] . Journal of Network and Computer Applications , 2020 ,157:102573.
0
浏览量
931
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构