浏览全部资源
扫码关注微信
1. 郑州大学电气与信息工程学院,河南 郑州 450001
2. 深圳市大数据研究院,广东 深圳 518115
[ "陆彦辉(1972− ),女,河南许昌人,郑州大学教授,主要研究方向为宽带无线通信理论与系统、无线资源管理和机器学习等" ]
[ "柳寒(1997− ),男,河南邓州人,郑州大学硕士生,主要研究方向为人工智能与大数据处理、大数据分析与数据挖掘" ]
[ "李航(1985− ),男,河北承德人,深圳市大数据研究院副研究员,主要研究方向为无线通信与网络、机器学习等" ]
[ "朱光旭(1989− ),男,广东广州人,深圳市大数据研究院副研究员,主要研究方向为边缘智能、联邦学习、通信感知一体化等" ]
网络出版日期:2022-10,
纸质出版日期:2022-10-25
移动端阅览
陆彦辉, 柳寒, 李航, 等. 基于多鉴别器生成对抗网络的时间序列生成模型[J]. 通信学报, 2022,43(10):167-176.
Yanhui LU, Han LIU, Hang LI, et al. Time series generation model based on multi-discriminator generative adversarial network[J]. Journal on communications, 2022, 43(10): 167-176.
陆彦辉, 柳寒, 李航, 等. 基于多鉴别器生成对抗网络的时间序列生成模型[J]. 通信学报, 2022,43(10):167-176. DOI: 10.11959/j.issn.1000-436x.2022205.
Yanhui LU, Han LIU, Hang LI, et al. Time series generation model based on multi-discriminator generative adversarial network[J]. Journal on communications, 2022, 43(10): 167-176. DOI: 10.11959/j.issn.1000-436x.2022205.
摘 要:针对时间序列的隐私性和连续性导致时间序列数据集在收集过程中存在收集代价昂贵和数据缺失等问题,提出了一种基于循环神经网络的多鉴别器生成对抗网络模型,该模型能够利用小规模数据集合成得到与真实数据相似分布的时间序列数据集。多鉴别器包含时域、频域、时频域和自相关4种鉴别器,能够充分识别时间序列不同维度下的特征。在实验中,通过损失函数的收敛分析、主成分分析和误差分析,分别从定性和定量的角度对模型进行性能评估。结果表明,所提模型和其他参考模型相比具有更好的性能。
Aiming at the problems of expensive collection cost and missing data due to the privacy and continuity of time series data set
a multi-discriminator generative adversarial network model based on recurrent neural network was proposed
which could synthesize time series dataset that were approximately distributed with real data of a small scale dataset.Multi-discriminator included four discriminators in time domain
frequency domain
time-frequency domain and autocorrelation.Different discriminators could effectively recognize the features of the time series in different domains.In the experiment
the convergence of loss function
principal component analysis and error analysis were performed to evaluate the performance of the model from qualitative and quantitative perspectives.The experimental results show that the proposed model has better performance than other reference models.
NAEEM M , JAMAL T , DIAZ-MARTINEZ J , et al . Trends and future perspective challenges in big data [C ] // Advances in Intelligent Data Analysis and Applications . Berlin:Springer , 2022 : 309 - 325 .
HE H T , GAO S C , JIN T , et al . A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction [J ] . Applied Soft Computing , 2021 ,10 8:107488.
ZHANG M , LIN H , LONG X R , et al . Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000—2019 time-series Landsat data [J ] . Science of the Total Environment , 2021 ,780:146615.
AL-SHABANDAR R , JADDOA A , LIATSIS P , et al . A deep gated recurrent neural network for petroleum production forecasting [J ] . Machine Learning With Applications , 2021 ,3:100013.
BALLI S . Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods [J ] . Chaos,Solitons & Fractals , 2021 ,142:110512.
THAPA C , CAMTEPE S . Precision health data:requirements,challenges and existing techniques for data security and privacy [J ] . Computers in Biology and Medicine , 2021 ,129:104130.
HUANG T G , CHAKRABORTY P , SHARMA A . Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images [J ] . International Journal of Transportation Science and Technology , 2021 :doi.org/10.1016/j.ijtst.2021.10.007.
IWANA B K , UCHIDA S . An empirical survey of data augmentation for time series classification with neural networks [J ] . PLoSOne , 2021 , 16 ( 7 ): e0254841 .
KINGMA D P , WELLING M . Auto-encoding variational Bayes [J ] . arXiv Preprint,arXiv:1312.6114 , 2013 .
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial networks [J ] . Communications of the ACM , 2020 , 63 ( 11 ): 139 - 144 .
RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative adversarial networks [J ] . arXiv Preprint,arXiv:1511.06434 , 2015 .
ARJOVSKY M , CHINTALA S , BOTTOU L . Wasserstein generative adversarial networks [C ] // Proceedings of the 34th International Conference on Machine Learning . [S.l.]:JMLR , 2017 : 214 - 223 .
ISOLA P , ZHU J Y , ZHOU T H , et al . Image-to-image translation with conditional adversarial networks [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2017 : 5967 - 5976 .
ZHU J Y , PARK T , ISOLA P , et al . Unpaired image-to-image translation using cycle-consistent adversarial networks [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2017 : 2242 - 2251 .
KARRAS T , LAINE S , AILA T M . A style-based generator architecture for generative adversarial networks [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2019 : 4396 - 4405 .
MEDSKER L R , JAIN L C . Recurrent neural networks [J ] . Design and Applications , 2001 , 5 : 64 - 67 .
GRAVES A . Long short-term memory [J ] . Supervised Sequence Labelling with Recurrent Neural Networks , 2012 , 385 : 37 - 45 .
MOGREN O . C-RNN-GAN:continuous recurrent neural networks with adversarial training [J ] . arXiv Preprint,arXiv:1611.09904 , 2016 .
ESTEBAN C , HYLAND S L , RÄTSCH G , . Real-valued (medical) time series generation with recurrent conditional GANs [J ] . arXiv Preprint,arXiv:1706.02633 , 2017 .
YOON J , JARRETT D , VAN DER SCHAAR M . Time-series generative adversarial networks [C ] // Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) .[S.l.:s.n. ] , 2019 : 1 - 11 .
NI H , SZPRUCH L , WIESE M , et al . Conditional Sig-Wasserstein GANs for time series generation [J ] . SSRN Electronic Journal , 2020 :doi.org/10.2139/ssrn.3623086.
OPPENHEIM A V , WILLSKY A S , NAWAB S H , et al . Signals &systems [M ] . New York : Pearson Educación , 1997 .
BAROT T , BURGSTEINER H , KOLLERITSCH W . Comparison of discrete autocorrelation functions with regards to statistical significance [C ] // Applied Informatics and Cybernetics in Intelligent Systems . Berlin:Springer , 2020 : 257 - 266 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv Preprint,arXiv:1412.6980 , 2014 .
0
浏览量
557
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构