浏览全部资源
扫码关注微信
1. 浙江工业大学信息工程学院,浙江 杭州 310023
2. 浙江工业大学网络空间安全研究院,浙江 杭州 310023
3. 陆军工程大学指挥控制工程学院,江苏 南京 210007
[ "陈晋音(1982− ),女,浙江象山人,博士,浙江工业大学教授、博士生导师,主要研究方向为人工智能、数据挖掘、智能计算" ]
[ "胡书隆(1998− ),男,江西吉安人,浙江工业大学硕士生,主要研究方向为深度强化学习和网络安全" ]
[ "邢长友(1982− ),男,江苏南京人,博士,陆军工程大学副教授、硕士生导师,主要研究方向为网络安全、软件定义网络、网络测量和网络功能虚拟化" ]
[ "张国敏(1979− ),男,江苏南京人,博士,陆军工程大学副教授、硕士生导师,主要研究方向为软件定义网络、网络安全、网络测量和网络功能虚拟化" ]
网络出版日期:2022-10,
纸质出版日期:2022-10-25
移动端阅览
陈晋音, 胡书隆, 邢长友, 等. 面向智能渗透攻击的欺骗防御方法[J]. 通信学报, 2022,43(10):106-120.
Jinyin CHEN, Shulong HU, Changyou XING, et al. Deception defense method against intelligent penetration attack[J]. Journal on communications, 2022, 43(10): 106-120.
陈晋音, 胡书隆, 邢长友, 等. 面向智能渗透攻击的欺骗防御方法[J]. 通信学报, 2022,43(10):106-120. DOI: 10.11959/j.issn.1000-436x.2022202.
Jinyin CHEN, Shulong HU, Changyou XING, et al. Deception defense method against intelligent penetration attack[J]. Journal on communications, 2022, 43(10): 106-120. DOI: 10.11959/j.issn.1000-436x.2022202.
摘 要:基于强化学习的智能渗透攻击旨在将渗透过程建模为马尔可夫决策过程,以不断试错的方式训练攻击者进行渗透路径寻优,从而使攻击者具有较强的攻击能力。为了防止智能渗透攻击被恶意利用,提出一种面向基于强化学习的智能渗透攻击的欺骗防御方法。首先,获取攻击者在构建渗透攻击模型时的必要信息(状态、动作、奖励);其次,分别通过状态维度置反扰乱动作生成,通过奖励值符号翻转进行混淆欺骗,实现对应于渗透攻击的前期、中期及末期的欺骗防御;最后,在同一网络环境中展开3个阶段的防御对比实验。实验结果表明,所提方法可以有效降低基于强化学习的智能渗透攻击成功率,其中,扰乱攻击者动作生成的欺骗方法在干扰比例为20%时,渗透攻击成功率降低为0。
The intelligent penetration attack based on reinforcement learning aims to model the penetration process as a Markov decision process
and train the attacker to optimize the penetration path in a trial-and-error manner
so as to achieve strong attack performance.In order to prevent intelligent penetration attacks from being maliciously exploited
a deception defense method for intelligent penetration attack based on reinforcement learning was proposed.Firstly
obtaining the necessary information for the attacker to construct the penetration model
which included state
action and reward.Secondly
conducting deception defense against the attacker through inverting the state dimension
disrupting the action generation
and flipping the reward value sign
respectively
which corresponded to the early
middle and final stages of the penetration attack.At last
the three-stage defense comparison experiments were carried out in the same network environment.The results show that the proposed method can effectively reduce the success rate of intelligent penetration attacks based on reinforcement learning.Besides
the deception method that disrupts the action generation of the attacker can reduce the penetration attack success rate to 0 when the interference ratio is 20%.
ARKIN B , STENDER S , MCGRAW G . Software penetration testing [J ] . IEEE Security & Privacy , 2005 , 3 ( 1 ): 84 - 87 .
杨宏宇 , 袁海航 , 张良 . 基于攻击图的主机安全评估方法 [J ] . 通信学报 , 2022 , 43 ( 2 ): 89 - 99 .
ROWE N C , CUSTY EJ , DUONG B T . Defending cyberspace with fake honeypots [J ] . Journal of Computers , 2007 , 2 ( 2 ): 25 - 36 .
KAUR G , KAUR N . Penetration testing-reconnaissance with Nmap tool [J ] . International Journal of Advanced Research in Computer Science , 2017 , 8 ( 3 ): 844 - 846 .
MULIŃSKI T . ICT security in tax administration - Rapid7 Nexpose vulnerability analysis [J ] . Studia Informatica , 2021 , 24 : 37 - 51 .
LEE A . Advanced penetration testing for highly-secured environments:the ultimate security guide [M ] . Birmingham : Packt Publishing , 2012 .
HelpSysthems . Core impact [EB ] . 2021 .
SAYED A . Adaptation,learning,and optimization over networks [J ] . Foundations and Trends in Machine Learning , 2014 , 7 ( 4/5 ): 311 - 801 .
MNIH V , KAVUKCUOGLU K , SILVER D , et al . Playing atari with deep reinforcement learning [J ] . arXiv Preprint,arXiv:1312.5602 , 2013 .
ZHOU S C , LIU J J , HOU D D , et al . Autonomous penetration testing based on improved deep Q-network [J ] . Applied Sciences , 2021 , 11 ( 19 ): 8823 .
TRAN K , AKELLA A , STANDEN M , et al . Deep hierarchical reinforcement agents for automated penetration testing [J ] . arXiv Preprint,arXiv:2109.06449 , 2021 .
DULAC-ARNOLD G , EVANS R , SUNEHAGP , et al . Reinforcement learning in large discrete action spaces [J ] . arXiv Preprint,arXiv:1512.07679 , 2015 .
YUILL J J . Defensive computer-security deception operations:processes,principles and techniques [D ] . Raleigh:North Carolina State University , 2006 .
Gartner Research . Hype cycle for threat-facing technologies 2017 [R ] . 2017 .
贾召鹏 , 方滨兴 , 刘潮歌 , 等 . 网络欺骗技术综述 [J ] . 通信学报 , 2017 , 38 ( 12 ): 128 - 143 .
JIA Z P , FANG B X , LIU C G , et al . Survey on cyber deception [J ] . Journal on Communications , 2017 , 38 ( 12 ): 128 - 143 .
胡永进 , 马骏 , 郭渊博 . 基于博弈论的网络欺骗研究 [J ] . 通信学报 , 2018 , 39 ( S2 ): 9 - 18 .
HU Y J , MA J , GUO Y B . Research on cyber deception based on game theory [J ] . Journal on Communications , 2018 , 39 ( S2 ): 9 - 18 .
王硕 , 王建华 , 裴庆祺 , 等 . 基于动态伪装网络的主动欺骗防御方法 [J ] . 通信学报 , 2020 , 41 ( 2 ): 97 - 111 .
WANG S , WANG J H , PEI Q Q , et al . Active deception defense method based on dynamic camouflage network [J ] . Journal on Communications , 2020 , 41 ( 2 ): 97 - 111 .
JAFARIAN J H , AL-SHAER E , DUAN Q . Adversary-aware IP address randomization for proactive agility against sophisticated attackers [C ] // Proceedings of 2015 IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2015 : 738 - 746 .
WANG K , CHEN X , ZHU Y F . Random domain name and address mutation (RDAM) for thwarting reconnaissance attacks [J ] . PLoS One , 2017 , 12 ( 5 ): e0177111 .
ANAGNOSTAKIS K , SIDIROGLOU S , AKRITIDIS P , et al . Detecting targeted attacks using shadow honeypots [C ] // Proceedings of the 14th Conference on USENIX Security Symposium . Berkeley:USENIX Association , 2005 :9.
ROWE N C , CUSTY E J , DUONG B T . Defending cyberspace with fake honeypots [J ] . Journal of Computers , 2007 , 2 ( 2 ): 25 - 36 .
石乐义 , 姜蓝蓝 , 刘昕 , 等 . 拟态式蜜罐诱骗特性的博弈理论分析 [J ] . 电子与信息学报 , 2013 , 35 ( 5 ): 1063 - 1068 .
SHI L Y , JIANG L L , LIU X , et al . Game theoretic analysis for the feature of mimicry honeypot [J ] . Journal of Electronics & Information Technology , 2013 , 35 ( 5 ): 1063 - 1068 .
SILVER D , HUANG A , MADDISON C J , et al . Mastering the game of Go with deep neural networks and tree search [J ] . Nature , 2016 , 529 ( 7587 ): 484 - 489 .
BERNER C , BROCKMAN G , CHAN B , et al . Dota 2 with large scale deep reinforcement learning [J ] . arXiv Preprint,arXiv:1912.06680 , 2019 .
VINYALS O , BABUSCHKIN I , CZARNECKI W M , et al . Grandmaster level in StarCraft II using multi-agent reinforcement learning [J ] . Nature , 2019 , 575 ( 7782 ): 350 - 354 .
SCHWARTZ J , KURNIAWATI H . Autonomous penetration testing using reinforcement learning [J ] . arXiv Preprint,arXiv:1905.05965 , 2019 .
ZENNARO F M , ERDODI L . Modeling penetration testing with reinforcement learning using capture-the-flag challenges and tabular Q-learning [J ] . arXiv Preprint,arXiv:2005.12632 , 2005 .
臧艺超 , 周天阳 , 朱俊虎 , 等 . 领域独立智能规划技术及其面向自动化渗透测试的攻击路径发现研究进展 [J ] . 电子与信息学报 , 2020 , 42 ( 9 ): 2095 - 2107 .
ZANG Y C , ZHOU T Y , ZHU J H , et al . Domain-independent intelligent planning technology and its application to automated penetration testing oriented attack path discovery [J ] . Journal of Electronics &Information Technology , 2020 , 42 ( 9 ): 2095 - 2107 .
SCHWARTZ J . Network attack simulator [EB ] . 2017 .
0
浏览量
721
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构