浏览全部资源
扫码关注微信
1. 信息工程大学密码工程学院,河南 郑州 450001
2. 郑州大学计算机与人工智能学院,河南 郑州 450001
[ "王一丰(1994− ),男,江苏泰兴人,信息工程大学博士生,主要研究方向为零样本学习、网络安全和入侵检测等" ]
[ "郭渊博(1975− ),男,陕西周至人,博士,信息工程大学教授、博士生导师,主要研究方向为大数据安全、态势感知等" ]
[ "陈庆礼(1998− ),男,河南新乡人,信息工程大学硕士生,主要研究方向为人工智能安全等" ]
[ "方晨(1993− ),男,安徽宿松人,博士,信息工程大学讲师,主要研究方向为机器学习、隐私安全等" ]
[ "林韧昊(1993− ),男,河南郑州人,郑州大学博士生,主要研究方向为深度学习、鲁棒性验证和网络安全等" ]
网络出版日期:2022-10,
纸质出版日期:2022-10-25
移动端阅览
王一丰, 郭渊博, 陈庆礼, 等. 基于对比学习的细粒度未知恶意流量分类方法[J]. 通信学报, 2022,43(10):12-25.
Yifeng WANG, Yuanbo GUO, Qingli CHEN, et al. Method based on contrastive learning for fine-grained unknown malicious traffic classification[J]. Journal on communications, 2022, 43(10): 12-25.
王一丰, 郭渊博, 陈庆礼, 等. 基于对比学习的细粒度未知恶意流量分类方法[J]. 通信学报, 2022,43(10):12-25. DOI: 10.11959/j.issn.1000-436x.2022180.
Yifeng WANG, Yuanbo GUO, Qingli CHEN, et al. Method based on contrastive learning for fine-grained unknown malicious traffic classification[J]. Journal on communications, 2022, 43(10): 12-25. DOI: 10.11959/j.issn.1000-436x.2022180.
摘 要:为了应对层出不穷的未知网络威胁和日益先进的逃逸攻击,针对恶意流量分类问题,提出了一种基于对比学习的细粒度未知恶意网络流量分类方法。所提方法基于变分自编码器,分为已知和未知流量分类2个阶段,分别基于交叉熵和重构误差对已知和未知恶意流量分类。与常规方法不同,该方法在各训练阶段中加入了对比学习方法,提高对小样本和未知类恶意流量的分类性能。同时,融合了再训练和重采样等方法,进一步提高对小样本类的分类精度和泛化性能。实验结果表明,所提方法分别提高了对小样本类20.3%和对未知类恶意类9.1%的细粒度分类宏平均召回率,并且极大地缓解了部分类上的逃逸攻击。
In order to protect against unknown threats and evasion attacks
a new method based on contrastive learning for fine-grained unknown malicious traffic classification was proposed.Specifically
based on variational auto-encoder (CVAE)
it included two classification stages
and cross entropy and reconstruction errors were used for known and unknown traffic classification respectively.Different form other methods
contrastive learning was adopted in different classification stages
which significantly improved the classification performance of the few-shot and unknown (zero-shot) classes.Moreover
some techniques (e.g.
re-training and re-sample) combined with contrastive learning further improved the classification performance of the few-shot classes and the generalization ability of model.Experimental results indicate that the proposed method has increased the macro recall of few-shot classes by 20.3% and the recall of unknown attacks by 9.1% respectively
and it also has protected against evasion attacks on partial classes to some extent.
SOYSAL M , SCHMIDT E G . Machine learning algorithms for accurate flow-based network traffic classification:evaluation and comparison [J ] . Performance Evaluation , 2010 , 67 ( 6 ): 451 - 467 .
DUSI M , GRINGOLI F , SALGARELLI L . Quantifying the accuracy of the ground truth associated with Internet traffic traces [J ] . Computer Networks , 2011 , 55 ( 5 ): 1158 - 1167 .
陈明豪 , 祝跃飞 , 芦斌 , 等 . 基于Attention-CNN的加密流量应用类型分类 [J ] . 计算机科学 , 2021 , 48 ( 4 ): 325 - 332 .
CHEN M H , ZHU Y F , LU B , et al . Classification of application type of encrypted traffic based on attention-CNN [J ] . Computer Science , 2021 , 48 ( 4 ): 325 - 332 .
CAMPFIELD M . The practical difference between known and unknown threats [J ] . Computer Fraud & Security , 2021 ( 5 ): 6 - 9 .
FRANK J . Artificial intelligence and intrusion detection:current and future directions [J ] . Computers & Security , 1995 , 14 ( 1 ): 31 .
TING C , FIELD R , FISHER A , et al . Compression analytics for classification and anomaly detection within network communication [J ] . IEEE Transactions on Information Forensics and Security , 2019 , 14 ( 5 ): 1366 - 1376 .
曾勇 , 吴正远 , 董丽华 , 等 . 加密流量中的恶意流量分类技术 [J ] . 西安电子科技大学学报 , 2021 , 48 ( 3 ): 170 - 187 .
ZENG Y , WU Z Y , DONG L H , et al . Research on malicious traffic identification technology in encrypted traffic [J ] . Journal of Xidian University , 2021 , 48 ( 3 ): 170 - 187 .
YANG J , CHEN X , CHEN S W , et al . Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection [J ] . IEEE Transactions on Information Forensics and Security , 2021 , 16 : 3538 - 3553 .
AKHTAR N , MIAN A . Threat of adversarial attacks on deep learning in computer vision:a survey [J ] . IEEE Access , 2018 , 6 : 14410 - 14430 .
韩宇 , 方滨兴 , 崔翔 , 等 . StealthyFlow:一种对抗条件下恶意代码动态流量伪装框架 [J ] . 计算机学报 , 2021 , 44 ( 5 ): 948 - 962 .
HAN Y , FANG B X , CUI X , et al . StealthyFlow:a framework for malware dynamic traffic camouflaging in adversarial environment [J ] . Chinese Journal of Computers , 2021 , 44 ( 5 ): 948 - 962 .
LIU J Y , ZENG Y Z , SHI J Y , et al . MalDetect:a structure of encrypted malware traffic detection [J ] . Computers,Materials & Continua , 2019 , 60 ( 2 ): 721 - 739 .
胡永进 , 郭渊博 , 马骏 , 等 . 基于对抗样本的网络欺骗流量生成方法 [J ] . 通信学报 , 2020 , 41 ( 9 ): 59 - 70 .
HU Y J , GUO Y B , MA J , et al . Method to generate cyber deception traffic based on adversarial sample [J ] . Journal on Communications , 2020 , 41 ( 9 ): 59 - 70 .
DIXON L , RISTENPART T , SHRIMPTON T . Network traffic obfuscation and automated Internet censorship [J ] . IEEE Security & Privacy , 2016 , 14 ( 6 ): 43 - 53 .
姚忠将 , 葛敬国 , 张潇丹 , 等 . 流量混淆技术及相应分类、追踪技术研究综述 [J ] . 软件学报 , 2018 , 29 ( 10 ): 3205 - 3222 .
YAO Z J , GE J G , ZHANG X D , et al . Research review on traffic obfuscation and its corresponding identification and tracking technologies [J ] . Journal of Software , 2018 , 29 ( 10 ): 3205 - 3222 .
HADSELL R , CHOPRA S , LECUN Y . Dimensionality reduction by learning an invariant mapping [C ] // Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2006 : 1735 - 1742 .
SOHN K , YAN X C , LEE H . Learning structured output representation using deep conditional generative models [C ] // Proceedings of the 28th International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2015 : 3483 - 3491 .
HAAN L D , FERREIRA A . Extreme value theory:an introduction [M ] . New York : Springer , 2006 .
DONG B , WANG X . Comparison deep learning method to traditional methods using for network intrusion detection [C ] // Proceedings of 2016 8th IEEE International Conference on Communication Software and Networks . Piscataway:IEEE Press , 2016 : 581 - 585 .
潘吴斌 , 程光 , 郭晓军 , 等 . 网络加密流量分类研究综述及展望 [J ] . 通信学报 , 2016 , 37 ( 9 ): 154 - 167 .
PAN W B , CHENG G , GUO X J , et al . Review and perspective on encrypted traffic identification research [J ] . Journal on Communications , 2016 , 37 ( 9 ): 154 - 167 .
WANG S S , YAN Q B , CHEN Z X , et al . Detecting android malware leveraging text semantics of network flows [J ] . IEEE Transactions on Information Forensics and Security , 2018 , 13 ( 5 ): 1096 - 1109 .
YAO Z J , GE J G , WU Y L , et al . Encrypted traffic classification based on Gaussian mixture models and hidden Markov models [J ] . Journal of Network and Computer Applications , 2020 ,166:102711.
TAYLOR V F , SPOLAOR R , CONTI M , et al . AppScanner:automatic fingerprinting of smartphone APPs from encrypted network traffic [C ] // Proceedings of 2016 IEEE European Symposium on Security and Privacy (EuroS&P) . Piscataway:IEEE Press , 2016 : 439 - 454 .
BAZUHAIR W , LEE W . Detecting malign encrypted network traffic using perlin noise and convolutional neural network [C ] // Proceedings of 2020 10th Annual Computing and Communication Workshop and Conference (CCWC) . Piscataway:IEEE Press , 2020 : 200 - 206 .
SHAREVSKI F , JACHIM P , FLOREK K . To tweet or not to tweet:covertly manipulating a Twitter debate on vaccines using malware-induced misperceptions [C ] // Proceedings of the 15th International Conference on Availability,Reliability and Security . Piscataway:IEEE Press , 2020 : 1 - 12 .
YAO H P , FU D Y , ZHANG P Y , et al . MSML:a novel multilevel semi-supervised machine learning framework for intrusion detection system [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 1949 - 1959 .
GENG C X , HUANG S J , CHEN S C . Recent advances in open set recognition:a survey [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , 43 ( 10 ): 3614 - 3631 .
ZHANG H , PATEL V M . Sparse representation-based open set recognition [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 8 ): 1690 - 1696 .
RUDD E M , JAIN L P , SCHEIRER W J , et al . The extreme value machine [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 3 ): 762 - 768 .
BENDALE A , BOULT T E . Towards open set deep networks [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 1563 - 1572 .
NEAL L , OLSON M , FERN X , et al . Open set learning with counterfactual images [C ] // Proceedings of the European Conference on Computer Vision (ECCV) . Berlin:Springer , 2018 : 613 - 628 .
GENG C X , CHEN S C . Collective decision for open set recognition [J ] . IEEE Transactions on Knowledge and Data Engineering , 2022 , 34 ( 1 ): 192 - 204 .
CRUZ S , COLEMAN C , RUDD E M , et al . Open set intrusion recognition for fine-grained attack categorization [C ] // Proceedings of 2017 IEEE International Symposium on Technologies for Homeland Security . Piscataway:IEEE Press , 2017 : 1 - 6 .
HENRYDOSS J , CRUZ S , RUDD E M , et al . Incremental open set intrusion recognition using extreme value machine [C ] // Proceedings of 2017 16th IEEE International Conference on Machine Learning and Applications . Piscataway:IEEE Press , 2017 : 1089 - 1093 .
SZEGEDY C , ZAREMBA W , SUTSKEVER I , et al . Intriguing properties of neural networks [J ] . arXiv Preprint,arXiv:1312.6199 , 2013 .
GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples [J ] . arXiv Preprint,arXiv:1412.6572 , 2014 .
MOPURI K R , GARG U , BABU R V . Fast feature fool:a data independent approach to universal adversarial perturbations [J ] . arXiv Preprint,arXiv:1707.05572 , 2017 .
LIN Z , SHI Y , XUE Z . Idsgan:generative adversarial networks for attack generation against intrusion detection [J ] . arXiv Preprint,arXiv:1809.02077 , 2018 .
LI J , ZHOU L , LI H X , et al . Dynamic traffic feature camouflaging via generative adversarial networks [C ] // Proceedings of 2019 IEEE Conference on Communications and Network Security . Piscataway:IEEE Press , 2019 : 268 - 276 .
GRILL J B , STRUB F , ALTCHÉ F , , et al . Bootstrap your own latent-a new approach to self-supervised learning [J ] . arXiv Preprint,arXiv:2006.07733 , 2020 .
SOHN K , . Improved deep metric learning with multi-class N-pair loss objective [C ] // Proceedings of the 30th International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2016 : 1857 - 1865 .
CHEN T , KORNBLITH S , NOROUZI M , et al . A simple frame-work for contrastive learning of visual representations [J ] . arXiv Preprint,arXiv:2002.05709 , 2020 .
HE K M , FAN H Q , WU Y X , et al . Momentum contrast for unsupervised visual representation learning [C ] // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 : 9726 - 9735 .
HU Q J , WANG X , HU W , et al . AdCo:adversarial contrast for efficient learning of unsupervised representations from self-trained negative adversaries [C ] // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2021 : 1074 - 1083 .
HO C H , NVASCONCELOS N . Contrastive learning with adversarial examples [J ] . arXiv Preprint,arXiv:2020.12050 , 2020 .
LI M Z , LIN X X , CHEN X Y , et al . Keywords and instances:a hierchical contrastive learning framework unifying hybrid granularities for text generation [J ] . arXiv Preprint,arXiv:2205.13346 , 2022 .
BUKCHIN G , SCHWARTZ E , SAENKO K , et al . Fine-grained angular contrastive learning with coarse labels [C ] // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2021 : 8726 - 8736 .
HABIBI L A H , DRAPER-GIL G , MAMUN M S I , et al . Characterization of tor traffic using time based features [C ] // Proceedings of the 3rd International Conference on Information Systems Security and Privacy.[S.l . ]:SCITEPRESS - Science and Technology Publications , 2017 : 253 - 262 .
HIGGINS I , MATTHEY L , PAL A , et al . Beta-vae:learning basic visual concepts with a constrained variational framework [C ] // ICLR 2017 Conference Homepage .[S.l.:s.n. ] , 2017 : 1 - 8 .
OORD A V D , LI Y Z , VINYALS O . Representation learning with contrastive predictive coding [J ] . arXiv Preprint,arXiv:1807.03748 , 2018 .
HENDRYCKS D , GIMPEL K . Early methods for detecting adversarial images [J ] . arXiv Preprint,arXiv:1608.00530 , 2016 .
FEINMAN R , CURTIN R R , SHINTRE S , et al . Detecting adversarial samples from artifacts [J ] . arXiv Preprint,arXiv:1703.00410 , 2017 .
TANAY T , GRIFFIN L D . A new angle on L2 regularization [J ] . arXiv Preprint,arXiv:1806.11186 , 2018 .
TRAMÈR F , KURAKIN A , PAPERNOT N , et al . Ensemble adversarial training:Attacks and defenses [J ] . arXiv Preprint,arXiv:1705.07204 , 2017 .
TAVALLAEE M , BAGHERI E , LU W , et al . A detailed analysis of the KDD CUP 99 data set [C ] // Proceedings of 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications . Piscataway:IEEE Press , 2009 : 1 - 6 .
0
浏览量
647
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构