浏览全部资源
扫码关注微信
1. 东华大学计算机科学与技术学院,上海201620
2. 上海立信会计金融学院信息管理学院,上海 201620
[ "王璿(1977- ),女,黑龙江齐齐哈尔人,博士,东华大学副教授,主要研究方向为数据查询、生物信息处理、分布式并行计算" ]
[ "张瑜(1997- ),男,江苏泰州人,东华大学硕士生,主要研究方向为社交网络" ]
[ "周军锋(1977- ),男,陕西西安人,博士,东华大学教授,主要研究方向为图数据的查询处理技术、推荐系统关键技术" ]
[ "陈子阳(1973- ),男,黑龙江五常人,博士,上海立信会计金融学院教授,主要研究方向为数据库理论与技术" ]
网络出版日期:2022-08,
纸质出版日期:2022-08-25
移动端阅览
王璿, 张瑜, 周军锋, 等. 基于社交网络的影响力最大化算法[J]. 通信学报, 2022,43(8):151-163.
Xuan WANG, Yu ZHANG, Junfeng ZHOU, et al. Influence maximization algorithm based on social network[J]. Journal on communications, 2022, 43(8): 151-163.
王璿, 张瑜, 周军锋, 等. 基于社交网络的影响力最大化算法[J]. 通信学报, 2022,43(8):151-163. DOI: 10.11959/j.issn.1000-436x.2022152.
Xuan WANG, Yu ZHANG, Junfeng ZHOU, et al. Influence maximization algorithm based on social network[J]. Journal on communications, 2022, 43(8): 151-163. DOI: 10.11959/j.issn.1000-436x.2022152.
影响力最大化问题研究在给定传播模型下如何选取社交网络中的一组种子用户,使信息通过这些用户实现最大范围的传播。现有算法主要存在2个问题:一是由于影响范围有限、时间复杂度高,难以适用于大规模社交网络;二是仅局限于特定传播模型,只能解决单一类型社交网络下的影响力最大化问题,当使用在不同类型社交网络上时效果较差。对此,基于2个经典影响力传播模型,结合反向影响采样技术,提出一种高效的影响力最大化(MTIM)算法。为验证MTIM算法的高效性,将其与IMM、TIM和PMC等贪心算法,以及OneHop和Degree D
iscount等启发式算法在4个真实社交网络上进行对比实验,结果表明MTIM算法能够提供
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow><mo>(</mo> <mrow> <mn>1</mn><mo>−</mo><mfrac> <mn>1</mn> <mtext>e</mtext> </mfrac> <mo>−</mo><mi>ε</mi></mrow> <mo>)</mo></mrow></math>
近似保证,显著扩大影响范围,并有效提高运行效率。
The influence maximization (IM) problem asks for a group of seed users in a social network under a given propagation model
so that the information spread is maximized through these users.Existing algorithms have two main problems.Firstly
these algorithms were difficult to be applied in large-scale social networks due to limited expected influence and high time complexity.Secondly
these algorithms were limited to specific propagation models and could only solve the IM problem under a single type of social network.When they were used in different types of networks
the effect was poor.In this regard
an efficient algorithm (MTIM) based on two classic propagation models and reverse influence sampling (RIS) was proposed.To verify the effectiveness of MTIM
experiments were conducted to compare MTIM with greedy algorithms such as IMM
TIM and PMC
and heuristic algorithms such as OneHop and Degree Discount on four real social networks.The results show that MTIM can return a
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow><mo>(</mo> <mrow> <mn>1</mn><mo>−</mo><mfrac> <mn>1</mn> <mtext>e</mtext> </mfrac> <mo>−</mo><mi>ε</mi></mrow> <mo>)</mo></mrow></math>
approximate solution
effectively expand the expected influence and significantly improve the efficiency.
KEMPE D , KLEINBERG J , TARDOS É , . Maximizing the spread of influence through a social network [C ] // Proceedings of the 9th ACM SIGKDD International Conference OnKnowledge Discovery and Data Mining . New York:ACM Press , 2003 : 137 - 146 .
LI Y C , FAN J , WANG Y H , et al . Influence maximization on social graphs:a survey [J ] . IEEE Transactions on Knowledge and Data Engineering , 2018 , 30 ( 10 ): 1852 - 1872 .
PENG H , HUANG K F , YANG L X , et al . Dynamic maintenance strategy for word-of-mouth marketing [J ] . IEEE Access , 2020 , 8 : 126496 - 126503 .
REN J F , LIU M T , LIU Y , et al . Optimal resource allocation with spatiotemporal transmission discovery for effective disease control [J ] . Infectious Diseases of Poverty , 2022 , 11 ( 1 ): 34 .
PAUL A , WU Z F , LIU K , et al . Personalized recommendation:from clothing to academic [J ] . Multimedia Tools and Applications , 2022 , 81 ( 10 ): 14573 - 14588 .
BINESH N , GHATEE M . Distance-aware optimization model for influential nodes identification in social networks with independent cascade diffusion [J ] . Information Sciences , 2021 , 581 : 88 - 105 .
BLESA M J , GARCÍA-RODRÍGUEZ P , SERNA M . Forward and backward linear threshold ranks [C ] // Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining . New York:ACM Press , 2021 : 265 - 269 .
ALI A , WANG H , KHAN A N . Mechanism to enhance team creative performance through social media:a transactive memory system approach [J ] . Computers in Human Behavior , 2018 , 91 : 115 - 126 .
BORGS C , BRAUTBAR M , CHAYES J , et al . Maximizing social influence in nearly optimal time [C ] // Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms . Philadelphia:Society for Industrial and Applied Mathematics , 2014 : 946 - 957 .
SUN L C , HUANG W R , YU P S , et al . Multi-round influence maximization [C ] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2018 : 2249 - 2258 .
GUO J X , WU W L . Influence maximization:seeding based on community structure [J ] . ACM Transactions on Knowledge Discovery from Data (TKDD) , 2020 , 14 ( 6 ): 1 - 22 .
GUO Q T , WEI Z W , et al . Influence maximization revisited:efficient reverse reachable set generation with bound tightened [C ] // Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data . New York:ACM Press , 2020 : 2167 - 2181 .
ARORA A , GALHOTRA S , et al . Debunking the myths of influence maximization:an in-depth benchmarking study [C ] // Proceedings of the 2017 ACM International Conference on Management of Data . New York:ACM Press , 2017 : 651 - 666 .
TANG Y Z , XIAO X K , et al . Influence maximization:near-optimal time complexity meets practical efficiency [C ] // Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data . New York:ACM Press , 2014 : 75 - 86 .
TANG Y Z , SHI Y C , XIAO X K . Influence maximization in near-linear time:a martingale approach [C ] // Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data . New York:ACM Press , 2015 : 1539 - 1554 .
TAKAI Y , MIYAUCHI A , IKEDA M , et al . Hypergraph clustering based on PageRank [C ] // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2020 : 1970 - 1978 .
TANG J , TANG X Y , et al . Online processing algorithms for influence maximization [C ] // Proceedings of the 2018 International Conference on Management of Data . New York:ACM Press , 2018 : 991 - 1005 .
TANG J , TANG X Y , YUAN J S . An efficient and effective hop-based approach for influence maximization in social networks [J ] . Social Network Analysis and Mining , 2018 , 8 ( 1 ): 1 - 19 .
OHSAKA N , AKIBA T , YOSHIDA Y , et al . Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2014 , 28 ( 1 ): 138 - 144 .
CHEN W , WANG Y J , YANG S Y . Efficient influence maximization in social networks [C ] // Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2009 : 199 - 208 .
0
浏览量
546
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构