浏览全部资源
扫码关注微信
南京邮电大学通信与信息工程学院,江苏 南京 210003
[ "杨洁(1980- ),女,江苏南京人,博士,南京邮电大学讲师,主要研究方向为分布式学习、边缘计算和智能无线通信等" ]
[ "董标(1998- ),男,江苏淮安人,南京邮电大学硕士生,主要研究方向为基于分布式学习的自动调制信号分类技术" ]
[ "付雪(1997- ),女,贵州遵义人,南京邮电大学博士生,主要研究方向为基于分布式学习的自动调制信号分类技术" ]
[ "王禹(1996- ),男,江苏盐城人,南京邮电大学博士生,主要研究方向为基于分布式学习的自动调制信号分类技术" ]
[ "桂冠(1982- ),男,安徽枞阳人,博士,南京邮电大学教授,主要研究方向为人工智能、深度学习、智能通信和智能物联网等6G技术" ]
网络出版日期:2022-06,
纸质出版日期:2022-07-25
移动端阅览
杨洁, 董标, 付雪, 等. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022,43(7):134-142.
Jie YANG, Biao DONG, Xue FU, et al. Lightweight decentralized learning-based automatic modulation classification method[J]. Journal on communications, 2022, 43(7): 134-142.
杨洁, 董标, 付雪, 等. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022,43(7):134-142. DOI: 10.11959/j.issn.1000-436x.2022145.
Jie YANG, Biao DONG, Xue FU, et al. Lightweight decentralized learning-based automatic modulation classification method[J]. Journal on communications, 2022, 43(7): 134-142. DOI: 10.11959/j.issn.1000-436x.2022145.
为了解决集中式学习存在的问题,提出了一种基于轻量化网络的分布式学习方法。分布式学习利用边缘设备进行本地训练和模型权重共享的方法训练同一个全局模型,既充分利用了各边缘设备的训练数据,又避免了边缘设备数据泄露。轻量化网络是一种由多个轻量化神经网络块堆叠而成的深度学习模型,相较于传统的深度学习模型,轻量化网络以较低的空间复杂度和时间复杂度实现较高的调制分类性能,有效地解决了分布式学习在实际部署中存在的边缘设备算力不足、存储空间有限及通信开销较高的问题。实验结果表明,基于分布式学习的自动调制信号分类技术在 RadioML.2016.10A 数据集的分类准确率为 62.41%,相比于集中式学习,分类准确率仅降低了 0.68%,训练效率提高了近 5 倍。实验结果也证明了在分布式学习下,部署轻量化网络可以有效降低通信开销。
In order to solve the problems in centralized learning
a lightweight decentralized learning-based AMC method was proposed.By the proposed decentralized learning
a global model was trained through local training and model weight sharing
which made full use of the dataset of each communication nodes and avoided the user data leakage.The proposed lightweight network was stacked by a number of different lightweight neural network blocks with a relatively low space complexity and time complexity
and achieved a higher recognition accuracy compared with traditional DL models
which could effectively solve the problems of computing power and storage space limitation of edge devices and high communication overhead in decentralized learning based AMC method.The experimental results show that the classification accuracy of the proposed method is 62.41% based on RadioML.2016.10 A.Compared with centralized learning
the training efficiency is nearly 5 times higher with a slight classification accuracy loss (0.68%).In addition
the experimental results also prove that the deployment of lightweight models can effectively reduce communication overhead in decentralized learning.
化存卿 . 物联网安全检测与防护机制综述 [J ] . 上海交通大学学报 , 2018 , 52 ( 10 ): 1307 - 1313 .
HUA C Q . A survey of security detection and protection for Internet of things [J ] . Journal of Shanghai Jiao Tong University , 2018 , 52 ( 10 ): 1307 - 1313 .
POPOOLA S I , ANDE R , ADEBISI B , et al . Federated deep learning for zero-day botnet attack detection in IoT-edge devices [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 5 ): 3930 - 3944 .
霍添财 . 物联网终端设备恶意软件检测研究与设计 [D ] . 西安:西安电子科技大学 , 2021 .
HUO T C . Research and design of malware detection of terminal devices in IoT networks [D ] . Xi’an:Xidian University , 2021 .
彭安妮 , 周威 , 贾岩 , 等 . 物联网操作系统安全研究综述 [J ] . 通信学报 , 2018 , 39 ( 3 ): 22 - 34 .
PENG A N , ZHOU W , JIA Y , et al . Survey of the Internet of things operating system security [J ] . Journal on Communications , 2018 , 39 ( 3 ): 22 - 34 .
STOYANOVA M , NIKOLOUDAKIS Y , PANAGIOTAKIS S , et al . A survey on the Internet of things (IoT) forensics:challenges,approaches,and open issues [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 2 ): 1191 - 1221 .
张玉清 , 周威 , 彭安妮 . 物联网安全综述 [J ] . 计算机研究与发展 , 2017 , 54 ( 10 ): 2130 - 2143 .
ZHANG Y Q , ZHOU W , PENG A N . Survey of Internet of things security [J ] . Journal of Computer Research and Development , 2017 , 54 ( 10 ): 2130 - 2143 .
梁浩然 , 伍军 , 赵程程 , 等 . 基于博弈优化边缘学习的物联网入侵检测研究 [J ] . 物联网学报 , 2021 , 5 ( 2 ): 37 - 47 .
LIANG H R , WU J , ZHAO C C , et al . Leveraging edge learning and game theory for intrusion detection in Internet of things [J ] . Chinese Journal on Internet of Things , 2021 , 5 ( 2 ): 37 - 47 .
林冲 , 闫文君 , 张立民 , 等 . 通信信号调制识别综述 [J ] . 中国电子科学研究院学报 , 2021 , 16 ( 11 ): 1074 - 1085 .
LIN C , YAN W J , ZHANG L M , et al . An overview of communication signals modulation recognition [J ] . Journal of China Academy of Electronics and Information Technology , 2021 , 16 ( 11 ): 1074 - 1085 .
代翱 , 张海剑 , 孙洪 . 联合时域和时频域特征的数字调制信号自动分类 [J ] . 信号处理 , 2016 , 32 ( 11 ): 1283 - 1292 .
DAI A , ZHANG H J , SUN H . Digital modulations automatic classification using the combination of several features extracted from time and time-frequence domain [J ] . Journal of Signal Processing , 2016 , 32 ( 11 ): 1283 - 1292 .
向建 , 高勇 . 基于GRU-CNN并联神经网络的自动调制识别 [J ] . 电讯技术 , 2021 , 61 ( 11 ): 1339 - 1343 .
XIANG J , GAO Y . Automatic modulation recognition based on GRU-CNN parallel neural network [J ] . Telecommunication Engineering , 2021 , 61 ( 11 ): 1339 - 1343 .
桂冠 , 王禹 , 黄浩 . 基于深度学习的物理层无线通信技术:机遇与挑战 [J ] . 通信学报 , 2019 , 40 ( 2 ): 19 - 23 .
GUI G , WANG Y , HUANG H . Deep learning based physical layer wireless communication techniques:opportunities and challenges [J ] . Journal on Communications , 2019 , 40 ( 2 ): 19 - 23 .
XU J L , LUO C B , PARR G , et al . A spatiotemporal multi-channel learning framework for automatic modulation recognition [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 10 ): 1629 - 1632 .
ZHANG Z F , LUO H , WANG C , et al . Automatic modulation classification using CNN-LSTM based dual-stream structure [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 11 ): 13521 - 13531 .
ZHANG F X , LUO C B , XU J L , et al . An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation [J ] . IEEE Communications Letters , 2021 , 25 ( 10 ): 3287 - 3290 .
HUYNH-THE T , HUA C H , PHAM Q V , et al . MCNet:an efficient CNN architecture for robust automatic modulation classification [J ] . IEEE Communications Letters , 2020 , 24 ( 4 ): 811 - 815 .
张立志 , 冉浙江 , 赖志权 , 等 . 分布式深度学习通信架构的性能分析 [J ] . 计算机工程与科学 , 2021 , 43 ( 3 ): 416 - 425 .
ZHANG L Z , RAN Z J , LAI Z Q , et al . Performance analysis of distributed deep learning communication architecture [J ] . Computer Engineering & Science , 2021 , 43 ( 3 ): 416 - 425 .
刘艺璇 , 陈红 , 刘宇涵 , 等 . 联邦学习中的隐私保护技术 [J ] . 软件学报 , 2022 , 33 ( 3 ): 1057 - 1092 .
LIU Y X , CHEN H , LIU Y H , et al . Privacy-preserving techniques in federated learning [J ] . Journal of Software , 2022 , 33 ( 3 ): 1057 - 1092 .
陈世达 , 刘强 , 韩亮 . 降低分布式训练通信的梯度稀疏压缩方法 [J ] . 浙江大学学报(工学版) , 2021 , 55 ( 2 ): 386 - 394 .
CHEN S D , LIU Q , HAN L . Gradient sparsification compression approach to reducing communication in distributed training [J ] . Journal of Zhejiang University (Engineering Science) , 2021 , 55 ( 2 ): 386 - 394 .
赵羽 , 杨洁 , 刘淼 , 等 . 面向视频监控基于联邦学习的智能边缘计算技术 [J ] . 通信学报 , 2020 , 41 ( 10 ): 109 - 115 .
ZHAO Y , YANG J , LIU M , et al . Federated learning based intelligent edge computing technique for video surveillance [J ] . Journal on Communications , 2020 , 41 ( 10 ): 109 - 115 .
WANG Y , GUO L , ZHAO Y , et al . Distributed learning for automatic modulation classification in edge devices [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 12 ): 2177 - 2181 .
0
浏览量
671
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构