浏览全部资源
扫码关注微信
1. 重庆大学微电子与通信工程学院,重庆 400044
2. 西南电子技术研究所,四川 成都 610036
[ "曾浩(1977- ),男,四川泸州人,博士,重庆大学教授、博士生导师,主要研究方向为阵列信号处理、无线通信技术" ]
[ "母王强(1997- ),男,重庆人,重庆大学硕士生,主要研究方向为目标跟踪" ]
[ "杨顺平(1976- ),男,四川岳池人,西南电子技术研究所高级工程师,主要研究方向为天线校准和天线测量技术" ]
网络出版日期:2022-06,
纸质出版日期:2022-07-25
移动端阅览
曾浩, 母王强, 杨顺平. 高机动目标跟踪ATPM-IMM算法[J]. 通信学报, 2022,43(7):93-101.
Hao ZENG, Wangqiang MU, Shunping YANG. High maneuvering target tracking ATPM-IMM algorithm[J]. Journal on communications, 2022, 43(7): 93-101.
曾浩, 母王强, 杨顺平. 高机动目标跟踪ATPM-IMM算法[J]. 通信学报, 2022,43(7):93-101. DOI: 10.11959/j.issn.1000-436x.2022135.
Hao ZENG, Wangqiang MU, Shunping YANG. High maneuvering target tracking ATPM-IMM algorithm[J]. Journal on communications, 2022, 43(7): 93-101. DOI: 10.11959/j.issn.1000-436x.2022135.
在高机动目标跟踪中,针对标准交互式多模型算法使用固定的转移概率矩阵导致跟踪精度下降的问题,提出了一种转移概率矩阵具备自适应更新的高机动目标跟踪 ATPM-IMM 算法。所提算法对模型后验概率和转移概率矩阵的先验信息要求不高,既适用于高机动目标跟踪,也适用于弱机动目标跟踪。仿真结果表明,所提算法的滤波精度比现有算法提升了约11%。
For high maneuvering target tracking
the accuracy of tracking will degrade in common IMM algorithm due to the fixed transition probability matrix.Therefore
a new ATPM-IMM algorithm for high maneuvering target tracking was proposed
which could update the transition probability matrix adaptively.The proposed algorithm requires less prior information of model posterior probability and transition probability matrix
it is suitable for both high and weak maneuvering target tracking.Simulation results demonstrate that the filtering accuracy of the proposed algorithm is improved about 11% compared with the existing algorithms.
KIRUBARAJAN T , SHALOM Y B . Kalman filter versus IMM estimator:when do we need the latter [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2003 , 39 ( 4 ): 1452 - 1457 .
KAPPL J J . Nonlinear estimation via Kalman filtering [J ] . IEEE Transactions on Aerospace and Electronic Systems , 1971 , 7 ( 1 ): 79 - 84 .
魏星 , 万建伟 , 皇甫堪 . 基于粒子滤波的单站无源定位跟踪新算法研究 [J ] . 通信学报 , 2005 , 26 ( 12 ): 81 - 85 .
WEI X , WAN J W , HUANG F K . New technique in single observer passive tracking based on particle filter [J ] . Journal on Communications , 2005 , 26 ( 12 ): 81 - 85 .
XIE A , YIN F , AI B , et al . Learning while tracking:a practical system based on variational Gaussian process state-space model and smartphone sensory data [C ] // Proceedings of 2020 IEEE 23rd International Conference on Information Fusion . Piscataway:IEEE Press , 2020 : 1 - 7 .
MA Y J , ZHAO S Y , HUANG B . Multiple-model state estimation based on variational Bayesian inference [J ] . IEEE Transactions on Automatic Control , 2019 , 64 ( 4 ): 1679 - 1685 .
LIM J , KIM H S , PARK H M . Interactive-multiple-model algorithm based on minimax particle filtering [J ] . IEEE Signal Processing Letters , 2020 , 27 : 36 - 40 .
AFTAB W , MIHAYLOVA L . A learning Gaussian process approach for maneuvering target tracking and smoothing [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2021 , 57 ( 1 ): 278 - 292 .
DOUCET A.RISTIC B . Recursive state estimation for multiple switching models with unknown transition probabilities [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2002 , 38 ( 3 ): 1098 - 1104 .
SADEGHZADEH-NOKHODBERIZ N , POSHTAN J . Distributed interacting multiple filters for fault diagnosis of navigation sensors in a robotic system [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2017 , 47 ( 7 ): 1383 - 1393 .
郭志 , 董春云 , 蔡远利 , 等 . 时变转移概率 IMM-SRCKF 机动目标跟踪算法 [J ] . 系统工程与电子技术 , 2015 , 37 ( 1 ): 24 - 30 .
GUO Z , DONG C Y , CAI Y L , et al . Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking [J ] . Systems Engineering and Electronics , 2015 , 37 ( 1 ): 24 - 30 .
QI S Y , QI C D , WANG W H . Maneuvering target tracking algorithm based on adaptive Markov transition probabilitiy matrix and IMM-MGEKF [C ] // Proceedings of 2018 12th International Symposium on Antennas,Propagation and EM Theory (ISAPE) . Piscataway:IEEE Press , 2018 : 1 - 4 .
LUAN Z Z , GU B , WANG J F . A real-time interactive multi-model (RT-IMM) target tracking method [C ] // Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications . Piscataway:IEEE Press , 2021 : 503 - 507 .
许登荣 , 程水英 , 包守亮 . 自适应转移概率交互式多模型跟踪算法 [J ] . 电子学报 , 2017 , 45 ( 9 ): 2113 - 2120 .
XU D R , CHENG S Y , BAO S L . Interacting multiple model algorithm based on adaptive transition probability [J ] . Acta Electronica Sinica , 2017 , 45 ( 9 ): 2113 - 2120 .
YOUN W , KO N Y , GADSDEN S A , et al . A novel multiple-model adaptive Kalman filter for an unknown measurement loss probability [J ] . IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 11 .
HAN B , HUANG H Q , LEI L , et al . An improved IMM algorithm based on STSRCKF for maneuvering target tracking [J ] . IEEE Access , 2019 , 7 : 57795 - 57804 .
MA J , GUO X T . Combination of IMM algorithm and ASTRWCKF for maneuvering target tracking [J ] . IEEE Access , 2020 , 8 : 143095 - 143103 .
戴定成 , 姚敏立 , 蔡宗平 , 等 . 改进的马尔可夫参数自适应IMM算法 [J ] . 电子学报 , 2017 , 45 ( 5 ): 1198 - 1205 .
DAI D C , YAO M L , CAI Z P , et al . Improved adaptive Markov IMM algorithm [J ] . Acta Electronica Sinica , 2017 , 45 ( 5 ): 1198 - 1205 .
XIE G , SUN L L , WEN T , et al . Adaptive transition probability matrix-based parallel IMM algorithm [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2021 , 51 ( 5 ): 2980 - 2989 .
RONG LI X , JILKOV V P . Survey of maneuvering target tracking (part I.dynamic models) [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2003 , 39 ( 4 ): 1333 - 1364 .
0
浏览量
367
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构