浏览全部资源
扫码关注微信
1. 哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080
2. 北京邮电大学人工智能学院,北京 100876
3. 哈尔滨工业大学计算机科学与技术学院,黑龙江 哈尔滨 150001
[ "李骜(1986- ),男,黑龙江哈尔滨人,博士,哈尔滨理工大学副教授、博士生导师,主要研究方向为模式识别、机器学习等" ]
[ "冯聪(1997- ),男,广东佛山人,哈尔滨理工大学硕士生,主要研究方向为机器学习、数据挖掘等" ]
[ "牛宇童(1997- ),男,黑龙江哈尔滨人,哈尔滨理工大学硕士生,主要研究方向为机器学习、视觉目标检测等" ]
[ "徐士彪(1985- ),男,吉林舒兰人,博士,北京邮电大学教授,主要研究方向为三维计算机视觉、模式识别、深度学习、遥感图像处理及虚拟现实等" ]
[ "张英涛(1979- ),女,黑龙江哈尔滨人,博士,哈尔滨工业大学副教授,主要研究方向为人工智能与信息处理等" ]
[ "孙广路(1979- ),男,黑龙江哈尔滨人,博士,哈尔滨理工大学教授、博士生导师,主要研究方向为机器学习、网络安全等" ]
网络出版日期:2022-06,
纸质出版日期:2022-07-25
移动端阅览
李骜, 冯聪, 牛宇童, 等. 面向视角非对齐数据的多视角聚类方法[J]. 通信学报, 2022,43(7):143-152.
Ao LI, Cong FENG, Yutong NIU, et al. Multiview clustering method for view-unaligned data[J]. Journal on communications, 2022, 43(7): 143-152.
李骜, 冯聪, 牛宇童, 等. 面向视角非对齐数据的多视角聚类方法[J]. 通信学报, 2022,43(7):143-152. DOI: 10.11959/j.issn.1000-436x.2022134.
Ao LI, Cong FENG, Yutong NIU, et al. Multiview clustering method for view-unaligned data[J]. Journal on communications, 2022, 43(7): 143-152. DOI: 10.11959/j.issn.1000-436x.2022134.
如何在视角对齐关系错位时有效进行非对齐多视角学习是一类新的挑战性问题。针对这一问题,提出面向视角非对齐数据的多视角聚类方法。一方面,为了捕获多视角异构特征的跨视角相似度信息,基于多视角非负矩阵分解进行表示学习,将原始特征嵌入一个可度量的低维同构空间。另一方面,在低维同构空间中,以二部图最优匹配模型建模视角对齐关系,并提出参考视角概念将模型推广至多视角情形。将表示学习和视角对齐关系学习整合到统一的Bi-level优化框架,使其在迭代中相互促进,进一步提高模型对视角非对齐数据的学习能力。在视角非对齐数据聚类应用上的大量实验结果表明,相比于8种先进的多视角聚类方法,所提方法在3个数据集上的多项性能指标均取得了较优的性能。
A new challenge for multi-view learning was posed by corrupted view-correspondences.To address this issue, an effective multi-view learning method for view-unaligned data was proposed.First,to capture cross-view latent affinity in multi-view heterogenous feature spaces,representation learning was employed based on multi-view non-negative matrix factorization to embed original features into a measurable low-dimensional subspace.Second
view-alignment relationships were modeled as optimal matching of a bipartite graph
which could be generalized to multiple-views situations via the proposed concept reference view.Representation learning and data alignment were further integrated into a unified Bi-level optimization framework to mutually boost the two learning processes
effectively enhancing the ability to learn from view-unaligned data.Extensive experimental results of view-unaligned clustering on three public datasets demonstrate that the proposed method outperforms eight advanced multiview clustering methods on multiple evaluation metrics.
ZHAO J , XIE X J , XU X , et al . Multi-view learning overview:recent progress and new challenges [J ] . Information Fusion , 2017 , 38 : 43 - 54 .
CHAO G Q , SUN S L , BI J B . A survey on multi-view clustering [J ] . IEEE Transactions on Artificial Intelligence , 2021 , 2 ( 2 ): 146 - 168 .
KANG Z , LIN Z , ZHU X , et al . Structured graph learning for scalable subspace clustering:from single view to multiview [J ] . IEEE Transactions on Cybernetics,2021:doi.org/ 10.1109/TCYB.2021.3061660 .
HUANG A P , CHEN W L , ZHAO T S , et al . Joint learning of latent similarity and local embedding for multi-view clustering [J ] . IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society , 2021 , 30 : 6772 - 6784 .
HUANG Z M , REN Y Z , PU X R , et al . Dual self-paced multi-view clustering [J ] . Neural Networks , 2021 , 140 : 184 - 192 .
TAO Z Q , LIU H F , LI S , et al . Marginalized multiview ensemble clustering [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2020 , 31 ( 2 ): 600 - 611 .
GAO Q X , XIA W , WAN Z Z , et al . Tensor-SVD based graph learning for multi-view subspace clustering [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2020 : 3930 - 3937 .
李骜 , 王卓 , 于晓洋 , 等 . 多核低冗余表示学习的稳健多视图子空间聚类方法 [J ] . 通信学报 , 2021 , 42 ( 11 ): 193 - 204 .
LI A , WANG Z , YU X Y , et al . Robust multiview subspace clustering method based on multi-kernel low-redundancy representation learning [J ] . Journal on Communications , 2021 , 42 ( 11 ): 193 - 204 .
NIE F , LI J , LI X . Parameter-free auto-weighted multiple graph learning:a framework for multiview clustering and semi-supervised classification [C ] // Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence .[S.l.:s.n. ] , 2016 : 1881 - 1887 .
NIE F P , LI J , LI X L . Self-weighted multiview clustering with multiple graphs [C ] // Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence .[S.l.:s.n. ] , 2017 : 2564 - 2570 .
LIANG Y W , HUANG D , WANG C D . Consistency meets inconsistency:a unified graph learning framework for multi-view clustering [C ] // Proceedings of 2019 IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2019 : 1204 - 1209 .
WANG H , YANG Y , LIU B . GMC:graph-based multi-view clustering [J ] . IEEE Transactions on Knowledge and Data Engineering , 2020 , 32 ( 6 ): 1116 - 1129 .
LIU J L , WANG C , GAO J , et al . Multi-view clustering via joint nonnegative matrix factorization [C ] // Proceedings of the 2013 SIAM International Conference on Data Mining . Philadelphia:Society for Industrial and Applied Mathematics , 2013 : 252 - 260 .
张祎 , 孔祥维 , 王振帆 , 等 . 基于多视图矩阵分解的聚类分析 [J ] . 自动化学报 , 2018 , 44 ( 12 ): 2160 - 2169 .
ZHANG Y , KONG X W , WANG Z F , et al . Matrix factorization for multi-view clustering [J ] . Acta Automatica Sinica , 2018 , 44 ( 12 ): 2160 - 2169 .
ZHANG C Q , FU H Z , LIU S , et al . Low-rank tensor constrained multiview subspace clustering [C ] // Proceedings of 2015 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2015 : 1582 - 1590 .
WU J L , LIN Z C , ZHA H B . Essential tensor learning for multi-view spectral clustering [J ] . IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society , 2019 , 28 ( 12 ): 5910 - 5922 .
HUANG Z Y , HU P , ZHOU J T , et al . Partially view-aligned clustering [C ] // Proceedings of the 34th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc . , 2020 : 2892 - 2902 .
YANG M X , LI Y F , HUANG Z Y , et al . Partially view-aligned representation learning with noise-robust contrastive loss [C ] // 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2021 : 1134 - 1143 .
CUI H , ZHANG J J , CUI C F , et al . Solving large-scale assignment problems by Kuhn-Munkres algorithm [C ] // Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) . Paris:Atlantis Press , 2016 : 822 - 827 .
COLSON B , MARCOTTE P , SAVARD G . An overview of bilevel optimization [J ] . Annals of Operations Research , 2007 , 153 ( 1 ): 235 - 256 .
KANG P P , LIN Z H , YANG Z G , et al . Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval [J ] . Applied Intelligence , 2022 , 52 ( 1 ): 33 - 54 .
ZHANG D L , WU X J . Robust and discrete matrix factorization hashing for cross-modal retrieval [J ] . Pattern Recognition , 2022 ,122:108343.
0
浏览量
358
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构