浏览全部资源
扫码关注微信
1. 中南大学计算机学院,湖南 长沙 410083
2. 东南大学移动通信国家重点实验室,江苏 南京 210096
3. 紫金山实验室,江苏 南京 211111
4. 湖南邮电职业技术学院信息通信学院,湖南 长沙 410015
5. 清华大学计算机科学与技术系,北京 100084
[ "何世文(1978- ),男,湖南汝城人,博士,中南大学教授、博士生导师,主要研究方向为无线通信与网络、分布式学习与优化计算理论、智能物联网(AIoT)和大数据分析的基础理论研究与无线通信网络平台开发及先进理论技术验证" ]
[ "袁军(1997- ),男,安徽六安人,中南大学硕士生,主要研究方向为图神经网络理论及其应用" ]
[ "安振宇(1988- ),男,安徽蚌埠人,博士,网络通信与安全紫金山实验室高级工程师,主要研究方向为超可靠低时延通信、跨层优化、智能优化等" ]
[ "张敏(1974- ),女,湖南平江人,湖南邮电职业技术学院教授,主要研究方向为多用户通信、协作通信、绿色通信、大规模多输入多输出通信" ]
[ "黄永明(1977- ),男,江苏吴江人,东南大学教授、博士生导师,主要研究方向为MIMO无线通信、协作无线通信、微波无线通信及应用" ]
[ "张尧学(1956- ),男,湖南常德人,中国工程院院士,清华大学教授、博士生导师,主要研究方向为计算机网络、操作系统以及普适计算" ]
网络出版日期:2022-06,
纸质出版日期:2022-07-25
移动端阅览
何世文, 袁军, 安振宇, 等. 基于图神经网络的联合用户调度与波束成形优化算法[J]. 通信学报, 2022,43(7):73-84.
Shiwen HE, Jun YUAN, Zhenyu AN, et al. GNN-based optimization algorithm for joint user scheduling and beamforming[J]. Journal on communications, 2022, 43(7): 73-84.
何世文, 袁军, 安振宇, 等. 基于图神经网络的联合用户调度与波束成形优化算法[J]. 通信学报, 2022,43(7):73-84. DOI: 10.11959/j.issn.1000-436x.2022133.
Shiwen HE, Jun YUAN, Zhenyu AN, et al. GNN-based optimization algorithm for joint user scheduling and beamforming[J]. Journal on communications, 2022, 43(7): 73-84. DOI: 10.11959/j.issn.1000-436x.2022133.
协作多点(CoMP)传输技术具有降低同频干扰和提高频谱效率的特点。对于 CoMP,用户调度与波束成形是2个分别位于媒体访问接入层和物理层的基本研究问题。在考虑用户服务质量需求下,重点研究用户调度与波束成形的联合优化问题,并以网络吞吐量最大化为目标。为了克服传统优化算法计算开销大且未有效利用网络历史数据信息的问题,提出了一种基于图神经网络联合用户调度与功率分配模型,并结合波束向量的解析公式,以实现联合用户调度与波束成形优化。仿真分析表明,所提算法能够以较低的计算开销实现与传统优化算法相匹配,甚至更优的性能表现。
The coordinated multi-point (CoMP) transmission technology has the characteristics of reducing co-channel interference and improving spectral efficiency.For the CoMP technology
user scheduling (US) and beamforming (BF) design are two fundamental research problems located in the media access control layer and the physical layer
respectively.Under the consideration of user service quality requirements
the joint user US-BF optimization problem was investigated with the goal of maximizing network throughput.To overcome the problem that the traditional optimization algorithm had high computational cost and couldn’t effectively utilize the network historical data information
a joint US and power allocation (M-JEEPON) model based on graph neural network was proposed to realize joint US-BF optimization by combining the beam vector analytical solution.The simulation results show that the proposed algorithm can achieve the performance matching or even better than traditional optimization algorithms with lower computational overhead.
BHUSHAN N , LI J Y , MALLADI D , et al . Network densification:the dominant theme for wireless evolution into 5G [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 82 - 89 .
BASSOY S , FAROOQ H , IMRAN M A , et al . Coordinated multi-point clustering schemes:a survey [J ] . IEEE Communications Surveys & Tutorials , 2017 , 19 ( 2 ): 743 - 764 .
3GPP . Coordinated multi-point operation for LTE physical layer aspects,v11.2.0 [R ] . TR 36.19 R11 , 2013 .
SOLAIJA M S J , SALMAN H , KIHERO A B , et al . Generalized coordinated multipoint framework for 5G and beyond [J ] . IEEE Access , 2020 , 9 : 72499 - 72515 .
QAMAR F , DIMYATI K B , HINDIA M N , et al . A comprehensive review on coordinated multi-point operation for LTE-A [J ] . Computer Networks , 2017 , 123 : 19 - 37 .
MUHAMMED A J , MA Z , DING Z G , et al . Resource allocation for energy-efficient NOMA system in coordinated multi-point networks [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 2 ): 1577 - 1591 .
LI M , COLLINGS I B , HANLY S V , et al . Multicell coordinated scheduling with multiuser zero-forcing beamforming [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 2 ): 827 - 842 .
ZHAI D S , ZHANG R N , CAI L , et al . Energy-efficient user scheduling and power allocation for NOMA-based wireless networks with massive IoT devices [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 3 ): 1857 - 1868 .
LI Z D , CHEN W , WU Q Q , et al . Robust beamforming design and time allocation for IRS-assisted wireless powered communication networks [J ] . IEEE Transactions on Communications , 2022 , 70 ( 4 ): 2838 - 2852 .
FU B , XIAO Y , DENG H M , et al . A survey of cross-layer designs in wireless networks [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 1 ): 110 - 126 .
CHEN Q M , YANG K X , JIANG H , et al . Joint beamforming coordination and user selection for CoMP enabled NR-U networks [J ] . IEEE Internet of Things Journal , 2021 , PP ( 99 ): 1 .
KIM Y , JEONG J , AHN S , et al . Energy and delay guaranteed joint beam and user scheduling policy in 5G CoMP networks [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 4 ): 2742 - 2756 .
HE S W , AN Z Y , ZHU J Y , et al . Cross-layer optimization:joint user scheduling and beamforming design with QoS support in joint transmission networks [J ] . arXiv Preprint,arXiv:2203.00934 , 2022 .
HE S W , XIONG S W , OU Y Y , et al . An overview on the application of graph neural networks in wireless networks [J ] . IEEE Open Journal of the Communications Society , 2021 , 2 : 2547 - 2565 .
伏玉笋 , 杨根科 . 人工智能在移动通信中的应用:挑战与实践 [J ] . 通信学报 , 2020 , 41 ( 9 ): 190 - 201 .
FU Y S , YANG G K . Application of artificial intelligence in mobile communication:challenge and practice [J ] . Journal on Communications , 2020 , 41 ( 9 ): 190 - 201 .
SHEN Y F , SHI Y M , ZHANG J , et al . A graph neural network approach for scalable wireless power control [C ] // Proceedings of 2019 IEEE Globecom Workshops . Piscataway:IEEE Press , 2019 : 1 - 6 .
LEE M Y , YU G D , LI G Y . Graph embedding-based wireless link scheduling with few training samples [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 4 ): 2282 - 2294 .
CHEN T R , ZHANG X R , YOU M L , et al . A GNN-based supervised learning framework for resource allocation in wireless IoT networks [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 3 ): 1712 - 1724 .
SHEN Y F , SHI Y M , ZHANG J , et al . Graph neural networks for scalable radio resource management:architecture design and theoretical analysis [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 1 ): 101 - 115 .
ZHANG X Y , ZHANG Z M , YANG L X . Joint user association and power allocation in heterogeneous ultra dense network via semi-supervised representation learning [J ] . arXiv Preprint,arXiv:2103.15367 , 2021 .
GUO J , YANG C Y . Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural networks [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 2 ): 884 - 897 .
FIORETTO F , MAK T W K , VAN HENTENRYCK P . Predicting AC optimal power flows:combining deep learning and Lagrangian dual methods [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2020 : 630 - 637 .
HE S W , AN Z Y , ZHU J Y , et al . Beamforming design for multiuser uRLLC with finite blocklength transmission [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 12 ): 8096 - 8109 .
GILMER J , SCHOENHOLZ S S , RILEY P F , et al . Neural message passing for quantum chemistry [C ] // Proceedings of International Conference on Machine Learning . New York:PMLR , 2017 : 1263 - 1272 .
ZHOU K X , HUANG X , LI Y N , et al . Towards deeper graph neural networks with differentiable group normalization [J ] . Advances in Neural Information Processing Systems , 2020 , 33 : 4917 - 4928 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv Preprint,arXiv:1412.6980 , 2014 .
0
浏览量
572
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构