浏览全部资源
扫码关注微信
北京邮电大学网络与交换国家重点实验室,北京 100876
[ "廖建新(1965- ),男,四川宜宾人,博士,北京邮电大学“长江学者”特聘教授、博士生导师,主要研究方向为移动通信网络、业务网络化、人工智能、多媒体业务等" ]
[ "付霄元(1993- ),女,黑龙江牡丹江人,博士,北京邮电大学副研究员、博士生导师,主要研究方向为智能网络、人工智能、深度学习等" ]
[ "戚琦(1982- ),女,河北廊坊人,博士,北京邮电大学教授、博士生导师,主要研究方向为智能边缘计算、轻量级神经网络、业务网络智能化等" ]
[ "王敬宇(1978- ),男,吉林长春人,博士,北京邮电大学教授、博士生导师,主要研究方向为智能网络、人工智能、计算机视觉、深度学习、多媒体通信等" ]
[ "孙海峰(1989- ),男,天津人,博士,北京邮电大学讲师、硕士生导师,主要研究方向为人工智能、机器视觉、自然语言处理、深度学习等" ]
网络出版日期:2022-06,
纸质出版日期:2022-06-25
移动端阅览
廖建新, 付霄元, 戚琦, 等. 6G-ADM:基于知识空间的6G网络管控体系[J]. 通信学报, 2022,43(6):3-15.
Jianxin LIAO, Xiaoyuan FU, Qi QI, et al. 6G-ADM: knowledge based 6G network management and control architecture[J]. Journal on communications, 2022, 43(6): 3-15.
廖建新, 付霄元, 戚琦, 等. 6G-ADM:基于知识空间的6G网络管控体系[J]. 通信学报, 2022,43(6):3-15. DOI: 10.11959/j.issn.1000-436x.2022127.
Jianxin LIAO, Xiaoyuan FU, Qi QI, et al. 6G-ADM: knowledge based 6G network management and control architecture[J]. Journal on communications, 2022, 43(6): 3-15. DOI: 10.11959/j.issn.1000-436x.2022127.
目的:随着立体覆盖、极致性能、虚实融合、泛在智能等 6G 愿景达成共识,个性化服务定制、网元种类激增、场景叠加多变等问题将给网络管控体系带来更加严峻的挑战。对 6G 网络而言,网元、协议、应用、架构等都将呈现高度异构性与复杂性。智慧内生与至简网络为6G 网络架构与功能设计提供了可行思路。智慧内生的 6G 网络,其网元具备不同级别的智能性,可自主生成策略完成传统人工配置策略实现的网络功能,为更高效的网络管控提供了基础条件。从大道至简的网络设计思想出发,由高效的网络管控入手,可通过全网多层级资源的快速高效组织与调配,简化网络架构、精简复杂协议、减轻人工运维,实现全场景网络按需服务。当前 5G 网络管理、控制和运维系统独立封闭,重点解决具体场景问题,其安全性、智能性、协同性缺乏全局规划和统一设计,难以应对未来沉浸式、个性化的全场景服务和性能需求,亟待面向 6G 按需服务的网络管控体系构建与关键技术突破。
方法:面向智简网络的设计需求,本文将网络内生智能的管控知识空间引入 6G 管控体系,知识空间负责收集和提取超级智能网络节点通过智能计算生成的网络管控经验和知识,构成网络管控知识库,对网络需求的感知、网络资源的共享以至于全域网络管控策略的生成起到超级大脑的作用,最终实现下一代网络实现基础设施之上只有一层知识空间作为管控决策层的 6G 管控架构内生智能与极简优化。基于此,本文提出基于知识空间的 6G 网络管控体系,简称为6G-ADM(6G admin)。
结果:为了实现 6G 业务的个性化定制,提高 6G 业务的性能,阐释网络管理、控制和运维的一体化集成趋势,网络的管控体系的发展将顺应“智简网络”的趋势发展形成“智简的管控一体化体系”。管控体系内生智能,智能管控的概念和策略生成过程趋于简约化,却将以更细粒度的方式分配资源。6G 网络将支持全场景的个性化、沉浸式服务,要为用户提供极低时延、极高可靠等极致性能体验。6G 资源很丰富,但仍然是有限的,需求增长和资源消耗存在矛盾,对细粒度资源的高度适配提出了重要挑战。本文提出 6G-ADM 完善网络管理和控制知识,旨在形成一个闭环来支持按需服务,并有效地处理 6G 网络中需求增长与资源消耗之间的矛盾。本文考虑到通过网络知识的内生智能实现可持续的按需服务,建立知识空间来协调人工智能和传统人工定义。
结论:作为实现 6G-ADM 闭环管控功能的两项关键技术,本文提出了一种新的网络切片方法基于知识空间的异常检测方法。6G-ADM 将包括资源分配和异常检测在内的闭环服务策略转化为全局网元的执行行为。本文通过仿真实验验证了所提方法的有效性。
Objectives: With the consensus reached on the 6G vision of three-dimensional coverage
extreme performance
virtual real integration and ubiquitous intelligence
problems such as personalized service customization
proliferation of network element types and changeable scene superposition will bring more severe challenges to the network management and control system. For 6G networks
network elements
protocols
applications and architectures will be highly heterogeneous and complex. Native Intelligence and lite networks provide feasible ideas for 6G network architecture and function design. The 6G network with native intelligence
whose network elements have different levels of intelligence
can independently generate strategies to complete the network functions realized by the traditional manual configuration strategies
providing the basic conditions for more efficient network management and control. Starting from the network design idea of "Da Dao Zhi Jian"
starting with efficient network management and control
the network architecture can be simplified
complex protocols can be simplified
manual operation and maintenance can be reduced
and the full scene network on-demand services can berealized through the rapid and efficient organization and allocation of multi-level resources in the whole network. At present
5G network management
control and operation and maintenance systems are closed independently
focusing on solving specific scenario problems. Their security
intelligence and collaboration lack global planning and unified design
and it is difficult to meet the future immersive and personalized full scenario services and performance requirements. It is urgent to build a network management and control system and make breakthroughs in key technologies for 6G on-demand services.
Methods: Facing the design requirements of intellicise network
this paper introduces intelligent knowledge space into the 6G control system. The knowledge space is responsible for collecting and extracting the network control experience and knowledge generated by super intelligent network nodes through intelligent computing to form a network control knowledge space. The perception of network needs
the sharing of network resources and the generation of global network control strategies play a role of a super brain. Finally
there is only one layer of knowledge space above the next generation network implementation infrastructure. The 6G management and control architecture as the management and control decision-making layer has native intelligence and minimalist optimization. Based on this
this paper proposes a 6G network management and control system based on knowledge space
which is called 6G-ADM(6G admin) for short.
Results: In order to realize the personalized customization of 6G services and improve the performance of 6G services
the integration trend of network management
control and operation was explained. The development of network management and control system will conform to the trend of "intellicise network" and form an "intellicise integration of management and control system". The management and control system is native intelligent. The concept and strategy generation process of intelligent management and control tends to be simplified
but resources will be allocated in a more granular manner. 6G network will support personalized and immersive services in the whole scene and provide users with extreme performance experience such as extremely low delay and high reliability. 6G resources are abundant
but still limited. There is a contradiction between demand growth and resource consumption
which poses an important challenge to the high adaptation of fine-grained resources. This paper proposes 6G-ADM to improve network management and control knowledge
aiming to form a closed loop to support on-demand services
and effectively deal with the contradiction between demand growth and resource consumption in 6G networks. This paper considers that the sustainable on-demand service can be realized through native intelligence of network knowledge
and establishes a knowledge space to coordinate artificial intelligence and traditional artificial definition.
Conclusion: As two key technologies to realize the closed-loop control function of 6G-ADM
this paper proposes a new network slicing method and an anomaly detection method based on knowledge space. 6G-ADM converts the closed-loop service policy including resource allocation and anomaly detection into the execution behavior of the global network elements. Simulation results show the effectiveness of the proposed methods.
CHEN S Z , LIANG Y C , SUN S H , et al . Vision,requirements,and technology trend of 6G:how to tackle the challenges of system coverage,capacity,user data-rate and movement speed [J ] . IEEE Wireless Communications , 2020 , 27 ( 2 ): 218 - 228 .
HAN S F , XIE T , LIN I C , et al . Artificial-intelligence-enabled air interface for 6G:solutions,challenges,and standardization impacts [J ] . IEEE Communications Magazine , 2020 , 58 ( 10 ): 73 - 79 .
VISWANATHAN H , MOGENSEN P E . Communications in the 6G era [J ] . IEEE Access , 2020 , 8 : 57063 - 57074 .
BI Q . Ten trends in the cellular industry and an outlook on 6G [J ] . IEEE Communications Magazine , 2019 , 57 ( 12 ): 31 - 36 .
GIORDANI M , POLESE M , MEZZAVILLA M , et al . Toward 6G networks:use cases and technologies [J ] . IEEE Communications Magazine , 2020 , 58 ( 3 ): 55 - 61 .
杨文翰 , 花国良 , 冯岩 , 等 . 星链计划卫星网络资料申报情况分析 [J ] . 天地一体化信息网络 , 2021 , 2 ( 1 ): 60 - 68 .
YANG W H , HUA G L , FENG Y , et al . Analysis of the starlink satellite network filing application [J ] . Space-Integrated-Ground Information Networks , 2021 , 2 ( 1 ): 60 - 68 .
SAAD W , BENNIS M , CHEN M Z . A vision of 6G wireless systems:applications,trends,technologies,and open research problems [J ] . IEEE Network , 2020 , 34 ( 3 ): 134 - 142 .
代玥玥 , 张科 , 张彦 . 区块链赋能 6G [J ] . 物联网学报 , 2020 , 4 ( 1 ): 111 - 120 .
DAI Y Y , ZHANG K , ZHANG Y . Blockchain empowered 6G [J ] . Chinese Journal on Internet of Things , 2020 , 4 ( 1 ): 111 - 120 .
张平 , 牛凯 , 田辉 , 等 . 6G 移动通信技术展望 [J ] . 通信学报 , 2019 , 40 ( 1 ): 141 - 148 .
ZHANG P , NIU K , TIAN H , et al . Technology prospect of 6G mobile communications [J ] . Journal on Communications , 2019 , 40 ( 1 ): 141 - 148 .
陈亮 , 余少华 . 6G 移动通信发展趋势初探(特邀) [J ] . 光通信研究 , 2019 ( 4 ): 1 - 8 .
CHEN L , YU S H . Preliminary study on the trend of 6G mobile communication [J ] . Study on Optical Communications , 2019 ( 4 ): 1 - 8 .
YU Q , REN J , FU Y J , et al . Cybertwin:an origin of next generation network architecture [J ] . IEEE Wireless Communications , 2019 , 26 ( 6 ): 111 - 117 .
刘超 , 陆璐 , 王硕 , 等 . 面向空天地一体多接入的融合6G网络架构展望 [J ] . 移动通信 , 2020 , 44 ( 6 ): 116 - 120 .
LIU C , LU L , WANG S , et al . Prospects for a multi-access air-space-terrestrial integrated 6G network architecture [J ] . Mobile Communications , 2020 , 44 ( 6 ): 116 - 120 .
LETAIEF K B , CHEN W , SHI Y M , et al . The roadmap to 6G:AI empowered wireless networks [J ] . IEEE Communications Magazine , 2019 , 57 ( 8 ): 84 - 90 .
华为 . 自动驾驶网络解决方案白皮书 [R ] . 2020 .
Huawei . Autonomous driving network [R ] . 2020 .
LATVA-AHO M , LEPPÄNEN K , . Key drivers and research challenges for 6G ubiquitous wireless intelligence [R ] . 2019 .
QI Q , WANG J Y , MA Z Y , et al . Knowledge-driven service offloading decision for vehicular edge computing:a deep reinforcement learning approach [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 5 ): 4192 - 4203 .
ZHOU Y Q , LIU L , WANG L , et al . Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching [J ] . Digital Communications and Networks , 2020 , 6 ( 3 ): 253 - 260 .
ZHOU Y Q , TIAN L , LIU L , et al . Fog computing enabled future mobile communication networks:a convergence of communication and computing [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 20 - 27 .
ZHANG P , PENG M G , CUI S G , et al . Theory and techniques for“intellicise” wireless networks [J ] . Frontiers of Information Technology& Electronic Engineering , 2022 , 23 ( 1 ): 1 - 6 .
张平 , 许晓东 , 韩书君 , 等 . 智简无线网络赋能行业应用 [J ] . 北京邮电大学学报 , 2020 , 43 ( 6 ): 1 - 9 .
ZHANG P , XU X D , HAN S J , et al . Entropy reduced mobile networks empowering industrial applications [J ] . Journal of Beijing University of Posts and Telecommunications , 2020 , 43 ( 6 ): 1 - 9 .
VAEZI M , AZARI A , KHOSRAVIRAD S R , et al . Cellular,wide-area,and non-terrestrial IoT:a survey on 5G advances and the road toward 6G [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 2 ): 1117 - 1174 .
0
浏览量
833
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构