浏览全部资源
扫码关注微信
1. 天津城建大学计算机与信息工程学院,天津 300384
2. 天津工业大学计算机科学与技术学院,天津 300387
[ "朱思峰(1975- ),男,河南周口人,博士,天津城建大学教授,主要研究方向为边缘计算、人工智能算法及应用等" ]
[ "蔡江昊(1998- ),男,湖北武汉人,天津城建大学硕士生,主要研究方向为边缘计算、人工智能算法等" ]
[ "柴争义(1976- ),男,陕西渭南人,博士,天津工业大学教授,主要研究方向为智能物联网、边缘计算等" ]
[ "孙恩林(1996- ),男,河北邢台人,天津城建大学硕士生,主要研究方向为边缘计算、人工智能算法等" ]
网络出版日期:2022-06,
纸质出版日期:2022-06-25
移动端阅览
朱思峰, 蔡江昊, 柴争义, 等. 车联网云边协同计算场景下的多目标优化卸载决策[J]. 通信学报, 2022,43(6):223-234.
Sifeng ZHU, Jianghao CAI, Zhengyi CHAI, et al. Multi-objective optimal offloading decision for cloud-edge collaborative computing scenario in Internet of vehicles[J]. Journal on communications, 2022, 43(6): 223-234.
朱思峰, 蔡江昊, 柴争义, 等. 车联网云边协同计算场景下的多目标优化卸载决策[J]. 通信学报, 2022,43(6):223-234. DOI: 10.11959/j.issn.1000-436x.2022114.
Sifeng ZHU, Jianghao CAI, Zhengyi CHAI, et al. Multi-objective optimal offloading decision for cloud-edge collaborative computing scenario in Internet of vehicles[J]. Journal on communications, 2022, 43(6): 223-234. DOI: 10.11959/j.issn.1000-436x.2022114.
目的:车联网场景下的计算任务对时延非常敏感,需要云边协同计算来满足这类需求。而车联网场景下车辆快速移动的特点使得常规的云边协同模型无法适用。本文结合车联网场景特有的车对车通信技术和边缘缓存技术,探索适用于车联网场景的云边协同计算卸载模型。
方法:针对车联网云边协同计算场景下如何高效地进行服务卸载并同时考虑服务的卸载决策以及边缘服务器和云服务器的协同资源分配问题,设计了基于云边协同的车辆计算网络架构,在该架构下,车载终端、云服务器和边缘服务器都可以提供计算服务;通过对缓存任务进行分类并将缓存策略引入车联网场景,依次设计了缓存模型、时延模型、能耗模型、服务质量模型以及多目标优化问题模型,将任务最大卸载时延引入服务质量模型;给出了一种基于改进的多目标优化免疫算法(MOIA)的卸载决策方案,该算法是一种多目标演化类算法,主要通过结合免疫思想和参考点策略实现对多目标问题的优化。
结果:最后,通过对比实验验证了所提卸载决策方案的有效性。实验结果表明,在满足最大卸载时延情况下本文提出的计算卸载模型能够应对不同需求的任务,具有较好的适应性。本文设计模型中卸载时延主要由七部分组成:任务下载服务应用所需的缓存时延、任务从车辆上传到边缘服务器的上传时延、任务从边缘服务器上传到云服务器的上传时延、任务所需的执行时延、任务在服务器端所需的排队时延、任务通过服务器进行跨区域传输所需的传输时延和任务通过基于车对车通信技术进行传输所需的传输时延。在对通信策略和缓存策略的实验中,可以看出本文中各部分时延有较为紧密的关联关系。对缓存策略效果的实验是通过取消一半可缓存的边缘缓存服务应用实现(MOIA-C),结果表明MOIA-C方案的卸载总时延和缓存时延较MOIA方案分别增加了35.88%和196.85%,这是由于可缓存服务应用数量的降低,卸载方案更倾向于将任务卸载到具有全部服务应用且性能更高的云服务器上,导致任务从边缘服务器上传到云服务器的上传时延和排队时延有所增长、执行时延有所降低,系统能量消耗下降,服务质量指标增加。通信策略采用基于服务器和基于车对车通信技术的混合传输方式,对通信策略的实验是通过取消基于车对车技术的通信方式实现(MOIA-S),结果表明MOIA-S方案的卸载总时延和通信总时延较MOIA方案分别增加了58.45%和433.33%,这是由于单独使用服务器进行任务传输会带来极大的带宽压力,为降低任务跨区域传输所带来的带宽压力,卸载方案更倾向于将任务卸载到云服务器执行,导致服务应用的缓存时延和任务的处理时延有所下降,而排队时延有所上升,系统能量消耗下降,服务质量指标增加。
结论:本文基于边缘缓存技术和车联网场景特有的车对车通信技术提出了一种自适应的服务缓存和任务卸载策略,在保证服务质量的基础上有效降低了车载任务的卸载总时延和车辆的能量消耗,可为车联网场景具有高时延敏感性任务提供了更为优质的服务。
Objectives:Computing tasks in Internet of vehicles are very sensitive to offloading delay
cloud-edge collaborative computing is required to meet such requirements. However
the characteristics of fast movement of vehicles in the Internet of vehicles make the conventional cloud-edge collaborative model not applicable. Combined with vehicle-to-vehicle communication technology and edge caching technology
this paper explores a cloud-edge collaborative computing offloading model suitable for The Internet of vehicles.
Methods:Aiming at the problem that in the cloud-edge collaborative computing scenario of the Internet of vehicles
it is a challenging problem how to efficiently offload services
and simultaneously consider the offloading decisions of services with the collaborative resource allocation of edge servers and cloud servers
a vehicle computing network architecture based on cloud-edge collaboration was designed. In this architecture
vehicle terminals
cloud servers and edge servers could provide computing services. The cache strategy was introduced into the scenario of Internet of vehicles by classifying cache tasks. The cache model
delay model
energy consumption model
quality of service model and multi-objective optimization model were designed successively
the maximum unload delay of tasks is introduced into the quality of service model. An improved multi-objective optimization immune algorithm(MOIA)was proposed for offloading decision making
the algorithm is a multi-objective evolutionary algorithm
mainly through the combination of immune thought and reference point strategy to achieve the optimization of multi-objective problems.
Results:Finally
the effectiveness of the proposed offloading decision scheme was verified by comparative experiments. Experimental results show that the computational offloading model proposed in this paper can cope with tasks with different requirements and has good adaptability under the condition of meeting the maximum offloading delay. Offloading delay in this design model is mainly composed of seven parts: The cache delay of service application required by task downloading from server
the uploading delay of task uploading from vehicle to edge server
the uploading delay of task uploading from edge server to cloud server
the execution delay required by task
the queuing delay required by task on server
the transmission delay required for tasks to be transmitted across regions through the server and the transmission delay required for tasks to be transmitted through vehicle-to-vehicle communication. In the experiment of communication strategy and cache strategy
it can be seen that each part of the delay in this paper has a relatively close relationship.The effect of cache strategy is tested by canceling half of cacheable edge cache service applications(MOIA-C).The results show that the total offload delay and cache delay of MOIA-C scheme increase 35.88% and 196.85% respectively compared with MOIA scheme
which is due to the decrease in the number of cacheable service applications. The scheme is more inclined to offload tasks to the cloud server that caches all service applications and has higher performance. As a result
the uploading delay of tasks from edge server to cloud server and the queuing delay of tasks on the server increase
the execution delay decreases
the system energy consumption decreases
and the service quality index increases.The communication strategy adopts the hybrid transmission mode based on server communication and vehicle-to-vehicle communication.The experiment of the communication strategy is realized by canceling the communication mode based on vehicle-to-vehicle technology (MOIA-S). The results show that the total offloading delay and communication delay of MOIA-S scheme increased by 58.45% and 433.33% respectively compared with MOIA scheme. This is due to the extreme bandwidth strain of using only the server to transport tasks. In order to reduce the bandwidth pressure caused by cross-region task transmission
the scheme tends to offload the task to the cloud server.Therefore
the cache delay of service application and the processing delay of the task decrease
the queuing delay increases
the system energy consumption decreases
and the quality of service index increases.
Conclusions:Based on vehicle-to-vehicle communication technology and edge caching technology
this paper proposes an adaptive service caching and task offloading strategy
which can effectively reduce the total delay of vehicles tasks and the energy consumption of vehicles while ensuring the quality of service
and provide better service for high-delay-sensitive tasks in Internet of vehicles scenarios.
SABELLA D , VAILLANT A , KUURE P , et al . Mobile-edge computing architecture:the role of MEC in the Internet of things [J ] . IEEE Consumer Electronics Magazine , 2016 , 5 ( 4 ): 84 - 91 .
MAO S , WU J S , LIU L , et al . Energy-efficient cooperative communication and computation for wireless powered mobile-edge computing [J ] . IEEE Systems Journal , 2022 , 16 ( 1 ): 287 - 298 .
CAO X W , WANG F , XU J , et al . Joint computation and communication cooperation for energy-efficient mobile edge computing [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 3 ): 4188 - 4200 .
MACH P , BECVAR Z . Mobile edge computing:a survey on architecture and computation offloading [J ] . IEEE Communications Surveys &Tutorials , 2017 , 19 ( 3 ): 1628 - 1656 .
宋宇波 , 金星妤 , 燕锋 , 等 . 车联网中移动边缘计算的安全高效节能卸载策略 [J ] . 清华大学学报(自然科学版) , 2021 , 61 ( 11 ): 1246 - 1253 .
SONG Y B , JIN X Y , YAN F , et al . Secure and energy efficient of-floading of mobile edge computing in the Internet of vehicles [J ] . Journal of Tsinghua University (Science and Technology) , 2021 , 61 ( 11 ): 1246 - 1253 .
ZHAO J H , LI Q P , GONG Y , et al . Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 8 ): 7944 - 7956 .
WU H M , ZHANG Z R , GUAN C , et al . Collaborate edge and cloud computing with distributed deep learning for smart city Internet of things [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 9 ): 8099 - 8110 .
LIU Y , YU H M , XIE S L , et al . Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 11 ): 11158 - 11168 .
ABBASI M , MOHAMMADI P E , KHOSRAVI M R . Workload allocation in IoT-fog-cloud architecture using a multi-objective genetic algorithm [J ] . Journal of Grid Computing , 2020 , 18 ( 1 ): 43 - 56 .
DAI P L , LIU K , FENG L , et al . Temporal information services in large-scale vehicular networks through evolutionary multi-objective optimization [J ] . IEEE Transactions on Intelligent Transportation Systems , 2019 , 20 ( 1 ): 218 - 231 .
ZHANG S , ZHANG N , YANG P , et al . Cost-effective cache deployment in mobile heterogeneous networks [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 12 ): 11264 - 11276 .
刘雷 , 陈晨 , 冯杰 , 等 . 车载边缘计算中任务卸载和服务缓存的联合智能优化 [J ] . 通信学报 , 2021 , 42 ( 1 ): 18 - 26 .
LIU L , CHEN C , FENG J , et al . Joint intelligent optimization of task offloading and service caching for vehicular edge computing [J ] . Jour-nal on Communications , 2021 , 42 ( 1 ): 18 - 26 .
YANG B , CAO X L , BASSEY J , et al . Computation offloading in multi-access edge computing:a multi-task learning approach [J ] . IEEE Transactions on Mobile Computing , 2021 , 20 ( 9 ): 2745 - 2762 .
WANG C M , YU F R , LIANG C C , et al . Joint computation offloading and interference management in wireless cellular networks with mobile edge computing [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 8 ): 7432 - 7445 .
HUSSAIN A , MANIKANTHAN S V , PADMAPRIYA T , et al . Genetic algorithm based adaptive offloading for improving IoT device communication efficiency [J ] . Wireless Networks , 2020 , 26 ( 4 ): 2329 - 2338 .
XU X L , GU R H , DAI F , et al . Multi-objective computation offloading for Internet of vehicles in cloud-edge computing [J ] . Wireless Networks , 2020 , 26 ( 3 ): 1611 - 1629 .
GONG M G , JIAO L C , DU H F , et al . Multiobjective immune algorithm with nondominated neighbor-based selection [J ] . Evolutionary Computation , 2008 , 16 ( 2 ): 225 - 255 .
DAS I , DENNIS J E . Normal-boundary intersection:a new method for generating the Pareto surface in nonlinear multicriteria optimization problems [J ] . SIAM Journal on Optimization , 1998 , 8 ( 3 ): 631 - 657 .
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,part I:solving problems with box constraints [J ] . IEEE Transactions on Evolutionary Computation , 2014 , 18 ( 4 ): 577 - 601 .
JAIN H , DEB K . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,part Ⅱ:handling constraints and extending to an adaptive approach [J ] . IEEE Transactions on Evolutionary Computation , 2014 , 18 ( 4 ): 602 - 622 .
DEB K , PRATAP A , AGARWAL S , et al . A fast and elitist multiobjective genetic algorithm:NSGA-II [J ] . IEEE Transactions on Evolutionary Computation , 2002 , 6 ( 2 ): 182 - 197 .
ZHANG Q F , LI H . MOEA/D:a multiobjective evolutionary algorithm based on decomposition [J ] . IEEE Transactions on Evolutionary Computation , 2007 , 11 ( 6 ): 712 - 731 .
LIU Q , MO R C , XU X L , et al . Multi-objective resource allocation in mobile edge computing using PAES for Internet of things [J ] . Wireless Networks , 2020 ( 3 ): 1 - 13 .
0
浏览量
664
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构